메뉴 건너뛰기




Volumn 30, Issue 4, 2005, Pages 956-965

Characterizations of the strong basic constraint qualifications

Author keywords

Basic constraint qualifications; Metric regularity; Strong basic constraint qualifications

Indexed keywords

BASIC CONSTRAINT QUALIFICATIONS; METRIC REGULARITY; STRONG BASIC CONSTRAINT QUALIFICATIONS;

EID: 31144432644     PISSN: 0364765X     EISSN: 15265471     Source Type: Journal    
DOI: 10.1287/moor.1050.0154     Document Type: Article
Times cited : (36)

References (11)
  • 1
    • 0001030731 scopus 로고    scopus 로고
    • Strong conical hull intersection property, bounded linear regularity, Jameson's property (G), and error bounds in convex optimization
    • Bauschke, H. H., J. M. Borwein, W. Li. 1999. Strong conical hull intersection property, bounded linear regularity, Jameson's property (G), and error bounds in convex optimization. Math. Programming 86 135-160.
    • (1999) Math. Programming , vol.86 , pp. 135-160
    • Bauschke, H.H.1    Borwein, J.M.2    Li, W.3
  • 3
    • 0037289378 scopus 로고    scopus 로고
    • Nonlinearly constrained best approximation in Hilbert space: The strong CHIP and the basic constraint qualification
    • Li, C., X.-Q. Jin. 2002. Nonlinearly constrained best approximation in Hilbert space: The strong CHIP and the basic constraint qualification. SIAM J. Optim. 13 228-239.
    • (2002) SIAM J. Optim. , vol.13 , pp. 228-239
    • Li, C.1    Jin, X.-Q.2
  • 4
    • 2442583687 scopus 로고    scopus 로고
    • Constraint qualification, the strong CHIP, and best approximation with convex constraints in Banach spaces
    • Li, C., K. F. Ng. 2003. Constraint qualification, the strong CHIP, and best approximation with convex constraints in Banach spaces. SIAM J. Optim. 14 584-607.
    • (2003) SIAM J. Optim. , vol.14 , pp. 584-607
    • Li, C.1    Ng, K.F.2
  • 5
    • 0031285679 scopus 로고    scopus 로고
    • Abadie's constraint qualification, metric regularity, and error bounds for differentiable convex inequalities
    • Li, W. 1997. Abadie's constraint qualification, metric regularity, and error bounds for differentiable convex inequalities. SIAM J. Optim. 7 966-978.
    • (1997) SIAM J. Optim. , vol.7 , pp. 966-978
    • Li, W.1
  • 6
    • 0034550220 scopus 로고    scopus 로고
    • Constraint qualifications for semi-infinite systems of convex inequalities
    • Li, W., C. Nahak, I. Singer. 2000. Constraint qualifications for semi-infinite systems of convex inequalities. SIAM J. Optim. 11 31-52.
    • (2000) SIAM J. Optim. , vol.11 , pp. 31-52
    • Li, W.1    Nahak, C.2    Singer, I.3
  • 7
    • 0000150038 scopus 로고    scopus 로고
    • Error bounds in mathematical programming
    • Pang, J. S. 1997. Error bounds in mathematical programming. Math. Programming 79 299-332.
    • (1997) Math. Programming , vol.79 , pp. 299-332
    • Pang, J.S.1
  • 8
    • 0016470397 scopus 로고
    • An application of error bounds for convex programming in a linear space
    • Robinson, S. M. 1975. An application of error bounds for convex programming in a linear space. SIAM J. Control Optim. 13 271-273.
    • (1975) SIAM J. Control Optim. , vol.13 , pp. 271-273
    • Robinson, S.M.1
  • 9
    • 0004267646 scopus 로고
    • Princeton University Press, Princeton, NJ
    • Rockafellar, R. T. 1970. Convex Analysis. Princeton University Press, Princeton, NJ.
    • (1970) Convex Analysis
    • Rockafellar, R.T.1
  • 10
    • 0039260618 scopus 로고
    • Sous-différentiel d'une enveloppe supérieure de fonctions convexes
    • Volle, M. 1993. Sous-différentiel d'une enveloppe supérieure de fonctions convexes. C.R. Acad. Sci. Paris Sér: I Math. 317 845-849.
    • (1993) C.R. Acad. Sci. Paris Sér: I Math. , vol.317 , pp. 845-849
    • Volle, M.1
  • 11
    • 4043110663 scopus 로고    scopus 로고
    • Metric regularity and constraint qualifications for convex inequalities on Banach spaces
    • Zheng, X. Y., K. F. Ng. 2004. Metric regularity and constraint qualifications for convex inequalities on Banach spaces. SIAM J. Optim. 14 757-772.
    • (2004) SIAM J. Optim. , vol.14 , pp. 757-772
    • Zheng, X.Y.1    Ng, K.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.