-
2
-
-
0037174457
-
-
Koike, K.; Okoshi, N.; Hori, H.; Takeuchi, K.; Ishitani, O.; Tsubaki, H.; Clark, I. P.; George, M. W.; Johnson, F. P. A.; Turner, J. J. J. Am. Chem. Soc. 2002, 124, 11448.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 11448
-
-
Koike, K.1
Okoshi, N.2
Hori, H.3
Takeuchi, K.4
Ishitani, O.5
Tsubaki, H.6
Clark, I.P.7
George, M.W.8
Johnson, F.P.A.9
Turner, J.J.10
-
3
-
-
0001380723
-
-
Woessner, S. M.; Helms, J. B.; Lantzky, K. M.; Sullivan, B. P. Inorg. Chem. 1999, 38, 4378.
-
(1999)
Inorg. Chem.
, vol.38
, pp. 4378
-
-
Woessner, S.M.1
Helms, J.B.2
Lantzky, K.M.3
Sullivan, B.P.4
-
4
-
-
31044445685
-
-
note
-
C≡C 2052.
-
-
-
-
5
-
-
12444283732
-
-
(a) Tsubaki, H.; Tohyama, S.; Koike, K.; Hideki, S.; Ishitani, O. Dalton Trans. 2005, 2, 385-395.
-
(2005)
Dalton Trans.
, vol.2
, pp. 385-395
-
-
Tsubaki, H.1
Tohyama, S.2
Koike, K.3
Hideki, S.4
Ishitani, O.5
-
6
-
-
31044446836
-
-
Ph.D. dissertation, University of Wyoming, Laramie, WY
-
(b) Del Negro, A. Ph.D. dissertation, University of Wyoming, Laramie, WY, 2004.
-
(2004)
-
-
Del Negro, A.1
-
9
-
-
0034717436
-
-
Koike, K.; Tanabe, J.; Toyama, S.; Tsubaki, H.; Sakamoto, K.; Westwell, J. R.; Johnson, F. P. A.; Hori, H.; Saitoh, H.; Ishitani, O. Inorg. Chem. 2000, 39, 2777-2783.
-
(2000)
Inorg. Chem.
, vol.39
, pp. 2777-2783
-
-
Koike, K.1
Tanabe, J.2
Toyama, S.3
Tsubaki, H.4
Sakamoto, K.5
Westwell, J.R.6
Johnson, F.P.A.7
Hori, H.8
Saitoh, H.9
Ishitani, O.10
-
10
-
-
31044445825
-
-
note
-
-1): ν(CO) 1969, 1900.
-
-
-
-
11
-
-
31044445966
-
-
note
-
-1): ν(CO) 1951, 1879.
-
-
-
-
12
-
-
0001492444
-
-
Stor, G. J.; Hartl, F.; van Outersterp, J. W. M.; Stufkens, D. J. Organometallics 1995, 14, 1115-1131.
-
(1995)
Organometallics
, vol.14
, pp. 1115-1131
-
-
Stor, G.J.1
Hartl, F.2
Van Outersterp, J.W.M.3
Stufkens, D.J.4
-
13
-
-
31044453039
-
-
note
-
The electronic ground state and geometry optimization were carried out using the B3LYP approximation, followed by a TDDFT calculation of the lowest excited states employing the same functional. The calculations utilized the 6-31G* basis set for the ligands and the LANL2 relativistic effective core potential for the transition metal. PCM calculations were employed to produce a number of singlet and triplet excited states of complex 1 in methylene chloride and acetonitrile based on the singlet/triplet ground-state geometry optimized in the gas phase. The self-consistent reaction field CPCM was implemented.
-
-
-
-
15
-
-
15744375697
-
-
Gaussian, Inc.: Wallingford, CT
-
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
-
(2004)
Gaussian03, Revision C.02
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
-
16
-
-
0037038510
-
-
Paterson, M. J.; Hunt, P. A.; Takahashi, O.; Robb, M. A. J. Phys. Chem. A 2002, 106, 10494-10504.
-
(2002)
J. Phys. Chem. A
, vol.106
, pp. 10494-10504
-
-
Paterson, M.J.1
Hunt, P.A.2
Takahashi, O.3
Robb, M.A.4
|