메뉴 건너뛰기




Volumn 69, Issue 1, 2006, Pages 157-160

A novel approach for accurate prediction of spontaneous passage of ureteral stones: Support vector machines

Author keywords

Artificial intelligence; Neural networks; Statistical methods; Support vector machine; Ureteral calculi; Urolithiasis

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; COMPUTER PREDICTION; COMPUTER PROGRAM; DIAGNOSTIC ACCURACY; DISEASE DURATION; FISHER EXACT TEST; KIDNEY COLIC; LOGISTIC REGRESSION ANALYSIS; PRIORITY JOURNAL; RANK SUM TEST; SCORING SYSTEM; URETER STONE; UROLITHIASIS;

EID: 30944439863     PISSN: 00852538     EISSN: 15231755     Source Type: Journal    
DOI: 10.1038/sj.ki.5000010     Document Type: Article
Times cited : (36)

References (18)
  • 1
    • 0030796821 scopus 로고    scopus 로고
    • Ureteral stones clinical guidelines panel summary report on the management of ureteral calculi
    • Segura JW, Preminger GM, Assimos DG et al. Ureteral stones clinical guidelines panel summary report on the management of ureteral calculi. J Urol 1997; 158: 1915-1921.
    • (1997) J Urol , vol.158 , pp. 1915-1921
    • Segura, J.W.1    Preminger, G.M.2    Assimos, D.G.3
  • 2
    • 2442621298 scopus 로고    scopus 로고
    • Management of ureteric stones
    • Anagnostu T, Tolley D. Management of ureteric stones. Eur Urol 2004; 45: 714-721.
    • (2004) Eur Urol , vol.45 , pp. 714-721
    • Anagnostu, T.1    Tolley, D.2
  • 3
    • 0032835582 scopus 로고    scopus 로고
    • Time to stone passage for observed ureteral calculi: A guide for patient education
    • Miller OF, Kane CJ. Time to stone passage for observed ureteral calculi: a guide for patient education. J Urol 1999; 162: 688-690.
    • (1999) J Urol , vol.162 , pp. 688-690
    • Miller, O.F.1    Kane, C.J.2
  • 4
    • 1642372313 scopus 로고    scopus 로고
    • A computer model to predict the outcome and duration of ureteral or renal calculous passage
    • Parekattil SJ, White MD, Moran ME, Kogan BA. A computer model to predict the outcome and duration of ureteral or renal calculous passage. J Urol 2004; 171: 1436-1439.
    • (2004) J Urol , vol.171 , pp. 1436-1439
    • Parekattil, S.J.1    White, M.D.2    Moran, M.E.3    Kogan, B.A.4
  • 6
    • 0036747901 scopus 로고    scopus 로고
    • Support vector machines and kernel methods
    • Cristianini N, Schoelkopf B. Support vector machines and kernel methods. Al Mag 2002; 23: 31-41.
    • (2002) Al Mag , vol.23 , pp. 31-41
    • Cristianini, N.1    Schoelkopf, B.2
  • 7
    • 0026966646 scopus 로고
    • A Training algorithm for optimal margin classifiers
    • ACM Press
    • Boser BE, Guyon I, Vapnik V. A Training algorithm for optimal margin classifiers. Proc Comput Learn Theory 1992: 144-152, ACM Press.
    • (1992) Proc Comput Learn Theory , pp. 144-152
    • Boser, B.E.1    Guyon, I.2    Vapnik, V.3
  • 10
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks vs logistic regression for predicting medical outcomes
    • Tu JV. Advantages and disadvantages of using artificial neural networks vs logistic regression for predicting medical outcomes. J Clin Epidemiol 1996; 49: 1225-1231.
    • (1996) J Clin Epidemiol , vol.49 , pp. 1225-1231
    • Tu, J.V.1
  • 11
    • 0035123210 scopus 로고    scopus 로고
    • Artificial neural network model for the assessment of lymph node spread in patients with clinically localized prostate cancer
    • Batuello JT, Gamito EJ, Crawford E et al. Artificial neural network model for the assessment of lymph node spread in patients with clinically localized prostate cancer. Urology 2001; 57: 481-485.
    • (2001) Urology , vol.57 , pp. 481-485
    • Batuello, J.T.1    Gamito, E.J.2    Crawford, E.3
  • 12
    • 0033926996 scopus 로고    scopus 로고
    • Prediction of spontaneous ureteral calculous passage by an artificial neural network
    • Cummings JM, Boullier JA, Izenberg SD et al. Prediction of spontaneous ureteral calculous passage by an artificial neural network. J Urol 2000; 164: 326-328.
    • (2000) J Urol , vol.164 , pp. 326-328
    • Cummings, J.M.1    Boullier, J.A.2    Izenberg, S.D.3
  • 13
    • 17744406891 scopus 로고    scopus 로고
    • Artificial neural networks in pediatric urology: Prediction of sonographic outcome following pyeloplasty
    • Bagli DJ, Agarwal SK, Venkateswaran S et al. Artificial neural networks in pediatric urology: prediction of sonographic outcome following pyeloplasty. J Urol 1998; 160: 980-983.
    • (1998) J Urol , vol.160 , pp. 980-983
    • Bagli, D.J.1    Agarwal, S.K.2    Venkateswaran, S.3
  • 15
    • 0141652946 scopus 로고    scopus 로고
    • The use of artificial neural networks for the selection of the most appropriate formulation and processing variables in order to predict the in vitro dissolution of sustained release minitablets
    • Leane MM, Cumming I, Corrigan OI. The use of artificial neural networks for the selection of the most appropriate formulation and processing variables in order to predict the in vitro dissolution of sustained release minitablets. PharmSciTech 2003; 4: E26.
    • (2003) PharmSciTech , vol.4
    • Leane, M.M.1    Cumming, I.2    Corrigan, O.I.3
  • 16
    • 3142543737 scopus 로고    scopus 로고
    • Nifedipine versus Tamsulosin for the management of lower ureteral stones
    • Porpiglia F, Ghignone G, Fiori C et al. Nifedipine versus Tamsulosin for the management of lower ureteral stones. J Urol 2004; 172: 568-571.
    • (2004) J Urol , vol.172 , pp. 568-571
    • Porpiglia, F.1    Ghignone, G.2    Fiori, C.3
  • 17
    • 0242692630 scopus 로고    scopus 로고
    • Efficacy of Tamsulosin in the medical management of juxtavesical ureteral stones
    • Dellabella M, Milanese G, Muzzonigro G. Efficacy of Tamsulosin in the medical management of juxtavesical ureteral stones. J Urol 2003; 170: 2202-2205.
    • (2003) J Urol , vol.170 , pp. 2202-2205
    • Dellabella, M.1    Milanese, G.2    Muzzonigro, G.3
  • 18
    • 3242783369 scopus 로고    scopus 로고
    • Can we improve the prediction of stone-free status after extracorporeal shock wave lithotripsy for ureteral stones? A neural network or a statistical model?
    • Gomha MA, Sheir KZ, Showky S et al. Can we improve the prediction of stone-free status after extracorporeal shock wave lithotripsy for ureteral stones? A neural network or a statistical model? J Urol 2004; 172: 175-179.
    • (2004) J Urol , vol.172 , pp. 175-179
    • Gomha, M.A.1    Sheir, K.Z.2    Showky, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.