메뉴 건너뛰기




Volumn 39, Issue 6, 2005, Pages 503-516

Kernel density estimation for heavy-tailed distributions using the champernowne transformation

Author keywords

Actuarial loss models; Champernowne distribution; Skewness; Transformation

Indexed keywords


EID: 30944439668     PISSN: 02331888     EISSN: 10294910     Source Type: Journal    
DOI: 10.1080/02331880500439782     Document Type: Article
Times cited : (107)

References (22)
  • 6
    • 0001077759 scopus 로고
    • Nonparametric density estimation with a parametric start
    • Hjort, N.L. and Glad, I.K., 1995, Nonparametric density estimation with a parametric start. The Annals of Statistics, 23, 882-904.
    • (1995) The Annals of Statistics , vol.23 , pp. 882-904
    • Hjort, N.L.1    Glad, I.K.2
  • 7
    • 0000431859 scopus 로고
    • A simple bias reduction method for density estimaton
    • Jones, M., Linton, O. and Nielsen, J.P., 1995, A simple bias reduction method for density estimaton. Biometrika, 82, 327-338.
    • (1995) Biometrika , vol.82 , pp. 327-338
    • Jones, M.1    Linton, O.2    Nielsen, J.P.3
  • 9
    • 0842285869 scopus 로고    scopus 로고
    • Density estimation using inverse and reciprocal inverse Gaussian kernels
    • Scaillet, O., 2004, Density estimation using inverse and reciprocal inverse Gaussian kernels. Journal of Nonparametric Statistics, 16, 217-226.
    • (2004) Journal of Nonparametric Statistics , vol.16 , pp. 217-226
    • Scaillet, O.1
  • 11
    • 77149139735 scopus 로고
    • The oxford meeting
    • September 25-29, October 1937
    • Champernowne, D.G., 1936, The Oxford Meeting, September 25-29, Econometrica, 5, October 1937.
    • (1936) Econometrica , vol.5
    • Champernowne, D.G.1
  • 12
    • 30944452195 scopus 로고
    • The theory of income distribution
    • Champernowne, D.G., 1937, The theory of income distribution. Econometrica, 5, 379-381.
    • (1937) Econometrica , vol.5 , pp. 379-381
    • Champernowne, D.G.1
  • 13
    • 0040662573 scopus 로고
    • The graduation of income distributions
    • Champernowne D.G., 1952, The graduation of income distributions. Econometrica, 20, 591-615.
    • (1952) Econometrica , vol.20 , pp. 591-615
    • Champernowne, D.G.1
  • 16
    • 0002182927 scopus 로고
    • A survey of sampling from comtaminated distributions
    • I. Olkin (Ed.) Stanford, California: Standford University Press
    • Tukey, J.W., 1960, A survey of sampling from comtaminated distributions. In: I. Olkin (Ed.) Contributions to Probability and Statistics (Stanford, California: Standford University Press).
    • (1960) Contributions to Probability and Statistics
    • Tukey, J.W.1
  • 17
    • 84950625757 scopus 로고
    • Simon Newcomb, Percy Daniell, and the history of robust estimation
    • Stigler, S.M., 1973, Simon Newcomb, Percy Daniell, and the history of robust estimation. Journal of the American Statistical Association, 68, 872-879.
    • (1973) Journal of the American Statistical Association , vol.68 , pp. 872-879
    • Stigler, S.M.1
  • 18
    • 30944451592 scopus 로고
    • Discussion and results of observations on transits of Mercury from 1677 to 1881
    • Newcomb, S., 1882, Discussion and results of observations on transits of Mercury from 1677 to 1881. Astronomical Papers, 1, 363-487.
    • (1882) Astronomical Papers , vol.1 , pp. 363-487
    • Newcomb, S.1
  • 19
    • 0001371071 scopus 로고
    • A generalized theory of the combination of observations so as to obtain the best results
    • Newcomb, S., 1886, A generalized theory of the combination of observations so as to obtain the best results. American Journal of Mathematics, 8, 343-366.
    • (1886) American Journal of Mathematics , vol.8 , pp. 343-366
    • Newcomb, S.1
  • 21
    • 0242680576 scopus 로고    scopus 로고
    • Root-n convergent transformation-kernel density estimation
    • Yang, L., 2000, Root-n convergent transformation-kernel density estimation. Journal of Nonparametric Statistics, 12, 447-474.
    • (2000) Journal of Nonparametric Statistics , vol.12 , pp. 447-474
    • Yang, L.1
  • 22


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.