-
1
-
-
84966249611
-
Tauberian theorems and stability of one-parameter semigroups
-
W. Arendt and C.J.K. Batty, Tauberian theorems and stability of one-parameter semigroups. Trans. Am. Math. Soc. 306 (1988) 837-852.
-
(1988)
Trans. Am. Math. Soc
, vol.306
, pp. 837-852
-
-
Arendt, W.1
Batty, C.J.K.2
-
3
-
-
0009618266
-
General formulation of the dispersion equation in bounded viscothermal fluid, and application to some simple geometries
-
M. Bruneau, Ph. Herzog, J. Kergomard and J.-D. Polack, General formulation of the dispersion equation in bounded viscothermal fluid, and application to some simple geometries. Wave Motion 11 (1989) 441-451.
-
(1989)
Wave Motion
, vol.11
, pp. 441-451
-
-
Bruneau, M.1
Herzog, P.H.2
Kergomard, J.3
Polack, J.-D.4
-
5
-
-
85011665196
-
Stabilization of second order evolution equations by unbounded nonlinear feedback
-
F. Conrad and M. Pierre, Stabilization of second order evolution equations by unbounded nonlinear feedback. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 11 (1994) 485-515.
-
(1994)
Ann. Inst. Henri Poincaré, Anal. Non Linéaire
, vol.11
, pp. 485-515
-
-
Conrad, F.1
Pierre, M.2
-
6
-
-
0001773481
-
An introduction to infinite-dimensional linear systems theory
-
R.F. Curtain and H. Zwart, An introduction to infinite-dimensional linear systems theory. Texts Appl. Math. 21 (1995).
-
(1995)
Texts Appl. Math.
, pp. 21
-
-
Curtain, R.F.1
Zwart, H.2
-
9
-
-
1642366889
-
Direct and inverse scattering problem in porous material having a rigid frame by fractional calculus based method
-
Z.E.A. Fellah, C. Depollier and M. Fellah, Direct and inverse scattering problem in porous material having a rigid frame by fractional calculus based method. J. Sound Vibration 244 (2001) 3659-3666.
-
(2001)
J. Sound Vibration
, vol.244
, pp. 3659-3666
-
-
Fellah, Z.E.A.1
Depollier, C.2
Fellah, M.3
-
10
-
-
30844463123
-
A Webster-Lokshin model for waves with viscothermal losses and impedance boundary conditions: Strong solutions
-
Jyvaskyla, Finland
-
H. Haddar, T. Helie and D. Matignon, A Webster-Lokshin model for waves with viscothermal losses and impedance boundary conditions: strong solutions, in Proc. of Sixth international conference on mathematical and numerical aspects of wave propagation phenomena, Jyvaskyla, Finland (2003) 66-71.
-
(2003)
Proc. Of Sixth International Conference on Mathematical and Numerical Aspects of wave propagation Phenomena
, pp. 66-71
-
-
Haddar, H.1
Helie, T.2
Matignon, D.3
-
11
-
-
0242440805
-
Unidimensional models of acoustic propagation in axisymmetric waveguides
-
Th. Helie, Unidimensional models of acoustic propagation in axisymmetric waveguides. J. Acoust. Soc. Am. 114 (2003) 2633-2647.
-
(2003)
J. Acoust. Soc. Am
, vol.114
, pp. 2633-2647
-
-
Helie, T.H.1
-
12
-
-
84960608350
-
On Wiener’s method in Tauberian theorems, in
-
A.E. Ingham, On Wiener’s method in Tauberian theorems, in Proc. London Math. Soc. II 38 (1935) 458-480.
-
(1935)
Proc. London Math. Soc. II
, vol.38
, pp. 458-480
-
-
Ingham, A.E.1
-
13
-
-
0001325228
-
On Newman’s quick way to the prime number theorem
-
J. Korevaar, On Newman’s quick way to the prime number theorem. Math. Intell. 4 (1982) 108-115.
-
(1982)
Math. Intell.
, vol.4
, pp. 108-115
-
-
Korevaar, J.1
-
14
-
-
0012474708
-
Wave equation with singular retarded time
-
(in Russian)
-
A.A. Lokshin, Wave equation with singular retarded time. Dokl. Akad. Nauk SSSR 240 (1978) 43-46 (in Russian).
-
(1978)
Dokl. Akad. Nauk SSSR
, vol.240
, pp. 43-46
-
-
Lokshin, A.A.1
-
15
-
-
0000911022
-
Fundamental solutions of the wave equation with retarded time
-
(in Russian)
-
A.A. Lokshin and V.E. Rok, Fundamental solutions of the wave equation with retarded time. Dokl. Akad. Nauk SSSR 239(1978) 1305-1308 (in Russian).
-
(1978)
Dokl. Akad. Nauk SSSR
, vol.239
, pp. 1305-1308
-
-
Lokshin, A.A.1
Rok, V.E.2
-
16
-
-
0003556556
-
Stability and stabilization of infinite dimensional systems and applications
-
Springer-Verlag, New York
-
Z.-H. Luo, B.-Z. Guo and O. Morgul, Stability and stabilization of infinite dimensional systems and applications. Comm. Control Engrg. Springer-Verlag, New York (1999).
-
(1999)
Comm. Control Engrg
-
-
Luo, Z.-H.1
Guo, B.-Z.2
Morgul, O.3
-
17
-
-
0003090139
-
Asymptotic stability of linear differential equations in Banach spaces
-
Yu.I. Lyubich and V.Q. Phong, Asymptotic stability of linear differential equations in Banach spaces. Stud. Math. 88 (1988)37-42.
-
(1988)
Stud. Math.
, vol.88
, pp. 37-42
-
-
Lyubich, Y.1
Phong, V.Q.2
-
18
-
-
0000074512
-
Stability properties for generalized fractional differential systems
-
D. Matignon, Stability properties for generalized fractional differential systems. ESAIM: Proc. 5 (1998) 145-158.
-
(1998)
ESAIM: Proc
, vol.5
, pp. 145-158
-
-
Matignon, D.1
-
19
-
-
0001752652
-
Diffusive representation of pseudo-differential time-operators
-
G. Montseny, Diffusive representation of pseudo-differential time-operators. ESAIM: Proc. 5 (1998) 159-175.
-
(1998)
ESAIM: Proc
, vol.5
, pp. 159-175
-
-
Montseny, G.1
-
20
-
-
0010783750
-
Simple analytic proof of the prime number theorem
-
D.J. Newman, Simple analytic proof of the prime number theorem. Am. Math. Mon. 87 (1980) 693-696.
-
(1980)
Am. Math. Mon.
, vol.87
, pp. 693-696
-
-
Newman, D.J.1
-
21
-
-
0000702465
-
Time domain solution of Kirchhoff’s equation for sound propagation in viscothermal gases: A diffusion process
-
J.-D. Polack, Time domain solution of Kirchhoff’s equation for sound propagation in viscothermal gases: a diffusion process. J. Acoustique 4 (1991) 47-67.
-
(1991)
J. Acoustique
, vol.4
, pp. 47-67
-
-
Polack, J.-D.1
-
22
-
-
0008690325
-
Well-posedness and stabilizability of a viscoelastic equation in energy space
-
O.J. Staffans, Well-posedness and stabilizability of a viscoelastic equation in energy space. Trans. Am. Math. Soc. 345 (1994)527-575.
-
(1994)
Trans. Am. Math. Soc.
, vol.345
, pp. 527-575
-
-
Staffans, O.J.1
-
23
-
-
0036944083
-
Passive and conservative continuous-time impedance and scattering systems. Part I: Well-posed systems
-
O.J. Staffans, Passive and conservative continuous-time impedance and scattering systems. Part I: Well-posed systems. Math. Control Sig. Syst. 15 (2002) 291-315.
-
(2002)
Math. Control Sig. Syst.
, vol.15
, pp. 291-315
-
-
Staffans, O.J.1
-
25
-
-
2942536559
-
How to get a conservative well-posed linear system out of thin air. Part I. Well-posedness and energy balance
-
G. Weiss and M. Tucsnak, How to get a conservative well-posed linear system out of thin air. Part I. Well-posedness and energy balance. ESAIM: COCV 9 (2003) 247-273.
-
(2003)
ESAIM: COCV
, vol.9
, pp. 247-273
-
-
Weiss, G.1
Tucsnak, M.2
|