-
5
-
-
0002079241
-
Large deviation probabilities for sums of random variables with heavy or subexponential tails
-
Texas A&M Univ
-
CLINE, D. B. H. and HSING, T. (1998). Large deviation probabilities for sums of random variables with heavy or subexponential tails. Technical report, Texas A&M Univ.
-
(1998)
Technical Report
-
-
Cline, D.B.H.1
Hsing, T.2
-
9
-
-
0002944036
-
Estimates for the probability of ruin with special emphasis on the possibility of large claims
-
MR652832
-
EMBRECHTS, P. and VERAVERBEKE, N. (1982). Estimates for the probability of ruin with special emphasis on the possibility of large claims. Insurance Math. Econom. 1 55-72. MR652832
-
(1982)
Insurance Math. Econom.
, vol.1
, pp. 55-72
-
-
Embrechts, P.1
Veraverbeke, N.2
-
11
-
-
0000732230
-
Implicit renewal theory and tails of solutions of random equations
-
MR1097468
-
GOLDIE, C. M. (1991). Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1 126-166. MR1097468
-
(1991)
Ann. Appl. Probab.
, vol.1
, pp. 126-166
-
-
Goldie, C.M.1
-
12
-
-
0035533105
-
On convergence toward an extreme value limit in C[0, 1]
-
MR1825160
-
DE HAAN, L. and LIN, T. (2001). On convergence toward an extreme value limit in C[0, 1]. Ann. Probab. 29 467-483. MR1825160
-
(2001)
Ann. Probab.
, vol.29
, pp. 467-483
-
-
De Haan, L.1
Lin, T.2
-
13
-
-
11844297317
-
Extremal behavior for regularly varying stochastic processes
-
MR2111194
-
HULT, H. and LINDSKOG, F. (2005). Extremal behavior for regularly varying stochastic processes. Stochastic Process. Appl. 115 249-274. MR2111194
-
(2005)
Stochastic Process. Appl.
, vol.115
, pp. 249-274
-
-
Hult, H.1
Lindskog, F.2
-
15
-
-
2942672026
-
Random difference equations and renewal theory for products of random matrices
-
MR440724
-
KESTEN, H. (1973). Random difference equations and renewal theory for products of random matrices. Ada Math. 131 207-248. MR440724
-
(1973)
Ada Math.
, vol.131
, pp. 207-248
-
-
Kesten, H.1
-
16
-
-
11844285088
-
-
Ph.D. thesis, Dept. Mathematics, Swiss Federal Institute of Technology, Switzerland. e-collection.ethbib.ethz.ch/cgi-bin/show.pl?type=diss\&nr=15319
-
LINDSKOG, F. (2004). Multivariate extremes and regular variation for stochastic processes. Ph.D. thesis, Dept. Mathematics, Swiss Federal Institute of Technology, Switzerland. Available at e-collection.ethbib.ethz.ch/cgi-bin/show.pl?type=diss\&nr=15319.
-
(2004)
Multivariate Extremes and Regular Variation for Stochastic Processes
-
-
Lindskog, F.1
-
17
-
-
0035413564
-
Long strange segments of a stochastic process and long range dependence
-
MR 1865027
-
MANSFIELD, P., RACHEV, S. and SAMORODNITSKY, G. (2001). Long strange segments of a stochastic process and long range dependence. Ann. Appl. Probab. 11 878-921. MR 1865027
-
(2001)
Ann. Appl. Probab.
, vol.11
, pp. 878-921
-
-
Mansfield, P.1
Rachev, S.2
Samorodnitsky, G.3
-
18
-
-
0002918670
-
Large deviations of heavy-tailed sums with applications to insurance
-
MR1652936
-
MIKOSCH, T. and NAGAEV, A.V. (1998). Large deviations of heavy-tailed sums with applications to insurance. Extremes 1 81-110. MR1652936
-
(1998)
Extremes
, vol.1
, pp. 81-110
-
-
Mikosch, T.1
Nagaev, A.V.2
-
19
-
-
0002470053
-
Limit theorems for large deviations where Cramér's conditions are violated
-
In Russian. MR282396
-
NAGAEV, A. V. (1969). Limit theorems for large deviations where Cramér's conditions are violated. Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 13 17-22. (In Russian.) MR282396
-
(1969)
Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk
, vol.13
, pp. 17-22
-
-
Nagaev, A.V.1
-
20
-
-
0002260883
-
Integral limit theorems for large deviations when Cramér's condition is not fulfilled I, II
-
MR247651
-
NAGAEV, A. V. (1969). Integral limit theorems for large deviations when Cramér's condition is not fulfilled I, II. Theory Probab. Appl. 14 51-64, 193-208. MR247651
-
(1969)
Theory Probab. Appl.
, vol.14
, pp. 51-64
-
-
Nagaev, A.V.1
-
21
-
-
0000895088
-
Large deviations of sums of independent random variables
-
MR542129
-
NAGAEV, S. V. (1979). Large deviations of sums of independent random variables. Ann. Probab. 7 745-789. MR542129
-
(1979)
Ann. Probab.
, vol.7
, pp. 745-789
-
-
Nagaev, S.V.1
-
23
-
-
0042408392
-
Long strange segments in a long range dependent moving average
-
MR1819487
-
RACHEV, S. and SAMORODNITSKY, G. (2001). Long strange segments in a long range dependent moving average. Stochastic Process. Appl. 93 119-148. MR1819487
-
(2001)
Stochastic Process. Appl.
, vol.93
, pp. 119-148
-
-
Rachev, S.1
Samorodnitsky, G.2
-
24
-
-
0002095272
-
Point processes, regular variation and weak convergence
-
MR827332
-
RESNICK, S. I. (1986). Point processes, regular variation and weak convergence. Adv. in Appl. Probab. 18 66-138. MR827332
-
(1986)
Adv. in Appl. Probab.
, vol.18
, pp. 66-138
-
-
Resnick, S.I.1
-
26
-
-
0001618530
-
On domains of attraction of multi-dimensional distributions
-
Amer. Math. Soc., Providence, RI. MR150795
-
RVAČEVA, E. L. (1962). On domains of attraction of multi-dimensional distributions. In Select. Transl. Math. Statist. Probab. 2 183-205. Amer. Math. Soc., Providence, RI. MR150795
-
(1962)
Select. Transl. Math. Statist. Probab.
, vol.2
, pp. 183-205
-
-
Rvačeva, E.L.1
|