-
1
-
-
0000544129
-
An Accuracy Assessment of Cartesian-Mesh Approaches for the Euler Equations
-
Coirier, W. J. and Powell, K. G., "An Accuracy Assessment of Cartesian-Mesh Approaches for the Euler Equations, " Journal of Computational Physics, Vol. 117, No. 1, pp. 121-131, 1995.
-
(1995)
Journal of Computational Physics
, vol.117
, Issue.1
, pp. 121-131
-
-
Coirier, W.J.1
Powell, K.G.2
-
2
-
-
21544449601
-
Hyperbolic Conservation Laws With Relaxation
-
Liu, T.-P., "Hyperbolic Conservation Laws With Relaxation, " Communications in Mathematical Physics, Vol. 108, No. 1, pp. 153-175, 1987.
-
(1987)
Communications in Mathematical Physics
, vol.108
, Issue.1
, pp. 153-175
-
-
Liu, T.-P.1
-
3
-
-
84990689276
-
Hyperbolic Conservation Laws With Stiff Relaxation Terms and Entropy
-
Chen, G.-Q., Levermore, C. D., and Liu, T.-P., "Hyperbolic Conservation Laws With Stiff Relaxation Terms and Entropy, " Communications on Pure and Applied Mathematics, Vol. 47, No. 6, pp. 787-830, 1994.
-
(1994)
Communications on Pure and Applied Mathematics
, vol.47
, Issue.6
, pp. 787-830
-
-
Chen, G.-Q.1
Levermore, C.D.2
Liu, T.-P.3
-
4
-
-
0000718834
-
Asymptotic Solutions of Numerical Transport Problems in Optically Thick, Diffusive Regimes
-
Larsen, E. W., Morel, J. E., and Miller, Jr., W. F., "Asymptotic Solutions of Numerical Transport Problems in Optically Thick, Diffusive Regimes, " Journal of Computational Physics, Vol. 69, No. 2, pp. 283-324, 1987.
-
(1987)
Journal of Computational Physics
, vol.69
, Issue.2
, pp. 283-324
-
-
Larsen, E.W.1
Morel, J.E.2
Miller Jr., W.F.3
-
5
-
-
0001729690
-
Asymptotic Solutions of Numerical Transport Problems in Optically Thick, Diffusive Regimes II
-
Larsen, E. W., and Morel, J. E., "Asymptotic Solutions of Numerical Transport Problems in Optically Thick, Diffusive Regimes II, " Journal of Computational Physics, Vol. 83, No. 1, pp. 212-236, 1989.
-
(1989)
Journal of Computational Physics
, vol.83
, Issue.1
, pp. 212-236
-
-
Larsen, E.W.1
Morel, J.E.2
-
6
-
-
0030194392
-
Numerical Schemes for Hyperbolic Conservation Laws With Stiff Relaxation Terms
-
Jin, S., and Levermore, C. D., "Numerical Schemes for Hyperbolic Conservation Laws With Stiff Relaxation Terms, " Journal of Computational Physics, Vol. 126, No. 2, pp.449-467, 1996.
-
(1996)
Journal of Computational Physics
, vol.126
, Issue.2
, pp. 449-467
-
-
Jin, S.1
Levermore, C.D.2
-
7
-
-
0038245930
-
-
Ph.D. Thesis, University of Michigan, Ann Arbor, Michigan
-
Arora, M., Explicit Characteristic-Based High-Resolution Algorithms for Hyperbolic Conservation Laws with Stiff Source Terms, Ph.D. Thesis, University of Michigan, Ann Arbor, Michigan, 1996.
-
(1996)
Explicit Characteristic-Based High-Resolution Algorithms for Hyperbolic Conservation Laws with Stiff Source Terms
-
-
Arora, M.1
-
8
-
-
0000417595
-
Numerical Methods for Hyperbolic Conservation Laws With Stiff Relaxation: II. Higher-Order Godunov Methods
-
Pember, R. B., "Numerical Methods for Hyperbolic Conservation Laws With Stiff Relaxation: II. Higher-Order Godunov Methods, " SIAM Journal on Scientific Computing, Vol. 14, No. 4, pp. 824-859, 1993.
-
(1993)
SIAM Journal on Scientific Computing
, vol.14
, Issue.4
, pp. 824-859
-
-
Pember, R.B.1
-
10
-
-
0001407297
-
Uniformly Accurate Schemes for Hyperbolic Systems With Relaxation
-
Caflisch, R. E., Jin, S., and Russo, G., Uniformly Accurate Schemes for Hyperbolic Systems With Relaxation, SIAM Journal on Numerical Analysis, Vol. 34, No. 1, pp. 246-281, 1997.
-
(1997)
SIAM Journal on Numerical Analysis
, vol.34
, Issue.1
, pp. 246-281
-
-
Caflisch, R.E.1
Jin, S.2
Russo, G.3
-
11
-
-
84884920515
-
Characteristic-Based Numerical Schemes For Hyperbolic Systems With Nonlinear Relaxation
-
(Bari, 1997), Rendiconti del Circolo Matematico di Palermo
-
Pareschi, L., "Characteristic-Based Numerical Schemes For Hyperbolic Systems With Nonlinear Relaxation, " Proceedings of the Ninth International Conference on Waves and Stability in Continuous Media, (Bari, 1997), Rendiconti del Circolo Matematico di Palermo (2) Suppl. 57, 1997, pp. 375-380.
-
(1997)
Proceedings of the Ninth International Conference on Waves and Stability in Continuous Media
, Issue.2 SUPPL. 57
, pp. 375-380
-
-
Pareschi, L.1
-
12
-
-
0031520155
-
A Roe-type Riemann Solver for Hyperbolic Systems With Relaxation Based on Time-Dependent Wave Decomposition
-
Bereux, F. and Sainsaulieu, L., "A Roe-type Riemann Solver for Hyperbolic Systems With Relaxation Based on Time-Dependent Wave Decomposition, " Numerische Mathematik, Vol. 77, No. 2, pp. 143-185, 1997.
-
(1997)
Numerische Mathematik
, vol.77
, Issue.2
, pp. 143-185
-
-
Bereux, F.1
Sainsaulieu, L.2
-
13
-
-
0034431558
-
Central Schemes for Balance Laws of Relaxation Type
-
Liotta, S. F., Romano, V., and Russo, G., "Central Schemes for Balance Laws of Relaxation Type, " SIAM Journal on Numerical Analysis, Vol. 38, No. 4, pp. 1337-1356, 2000.
-
(2000)
SIAM Journal on Numerical Analysis
, vol.38
, Issue.4
, pp. 1337-1356
-
-
Liotta, S.F.1
Romano, V.2
Russo, G.3
-
14
-
-
2142801597
-
-
Ph.D. Thesis, Univeristy of Michigan, Ann Arbor, Michigan
-
Hittinger, J. A., Foundations for the Generalization of the Godunov Method to Hyperbolic Systems with Stiff Relaxation Source Terms, Ph.D. Thesis, Univeristy of Michigan, Ann Arbor, Michigan, 2000.
-
(2000)
Foundations for the Generalization of the Godunov Method to Hyperbolic Systems with Stiff Relaxation Source Terms
-
-
Hittinger, J.A.1
-
15
-
-
0037201084
-
Methods for Hyperbolic Systems With Stiff Relaxation
-
Lowrie, R. B. and Morel, J. E., "Methods for Hyperbolic Systems With Stiff Relaxation, " International Journal for Numerical Methods in Fluids, Vol. 40, pp. 413-423, 2002.
-
(2002)
International Journal for Numerical Methods in Fluids
, vol.40
, pp. 413-423
-
-
Lowrie, R.B.1
Morel, J.E.2
-
16
-
-
0000287554
-
Numerical Schemes for Hyperbolic Systems of Conservation Laws With Stiff Diffusive Relaxation
-
Naldi, G., and Pareschi, L., "Numerical Schemes for Hyperbolic Systems of Conservation Laws With Stiff Diffusive Relaxation, " SIAM Journal on Numerical Analysis, Vol. 37, No. 4, pp. 1246-1270, 2000.
-
(2000)
SIAM Journal on Numerical Analysis
, vol.37
, Issue.4
, pp. 1246-1270
-
-
Naldi, G.1
Pareschi, L.2
-
17
-
-
84884972630
-
Discontinuous Galerkin for Diffusion
-
AIAA-2005-5108, June
-
Van Leer, B., Nomura, S., "Discontinuous Galerkin for Diffusion, " AIAA-2005-5108, 17th AIAA Computational Fluid Dynamics Conference, June 2005.
-
(2005)
17th AIAA Computational Fluid Dynamics Conference
-
-
van Leer, B.1
Nomura, S.2
-
18
-
-
3343001102
-
Asymptotic Analysis of the Riemann Problem for Constant Coefficient Hyperbolic Systems with Relaxation
-
Hittinger, J. A. F. and Roe, P. L., "Asymptotic Analysis of the Riemann Problem for Constant Coefficient Hyperbolic Systems with Relaxation, " Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 84, No. 7, 2004, pp. 452-471.
-
(2004)
Zeitschrift für Angewandte Mathematik und Mechanik
, vol.84
, Issue.7
, pp. 452-471
-
-
Hittinger, J.A.F.1
Roe, P.L.2
-
19
-
-
35648991229
-
Stabilization of Difference Schemes for Hyperbolic Systems of Conservation Laws by Artificial Diffusion
-
Van Leer, B. "Stabilization of Difference Schemes for Hyperbolic Systems of Conservation Laws by Artificial Diffusion, " Journal of Computational Physics, Vol. 3, pp. 473, 1969.
-
(1969)
Journal of Computational Physics
, vol.3
, pp. 473
-
-
van Leer, B.1
-
20
-
-
0000876320
-
On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws
-
Harten, A., Lax, P., and Van Leer, B., "On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws, " SIAM Review, Vol. 25, No. 1, pp. 35-61, 1983.
-
(1983)
SIAM Review
, vol.25
, Issue.1
, pp. 35-61
-
-
Harten, A.1
Lax, P.2
van Leer, B.3
-
21
-
-
49449129017
-
Towards the Ultimate Conservative Difference Scheme. IV. A New Approach to Numerical Convection
-
Van Leer, B., "Towards the Ultimate Conservative Difference Scheme. IV. A New Approach to Numerical Convection, " Journal of Computational Physics, Vol. 23, pp. 276-299, 1977.
-
(1977)
Journal of Computational Physics
, vol.23
, pp. 276-299
-
-
van Leer, B.1
|