메뉴 건너뛰기




Volumn 5, Issue 1, 2006, Pages 1-7

A software reliability time series growth model with Kalman filter

Author keywords

Kalman filter; Observation noise; Software reliability growth model; State space; Time series

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; COMPUTER SYSTEMS; KALMAN FILTERING; MATHEMATICAL MODELS; NOISE ABATEMENT; REGRESSION ANALYSIS; RELIABILITY; STATE SPACE METHODS; TIME SERIES ANALYSIS;

EID: 30644461482     PISSN: 11092750     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (3)

References (17)
  • 5
    • 0022252694 scopus 로고
    • Software Reliability Models: Assumptions, Limitations, and Applicability
    • A.L. Goel, Software Reliability Models: Assumptions, Limitations, and Applicability, IEEE Transactions on Software Engineering, Vol.SE-11, 1985, pp. 1411-1423.
    • (1985) IEEE Transactions on Software Engineering , vol.SE-11 , pp. 1411-1423
    • Goel, A.L.1
  • 6
    • 0030143081 scopus 로고    scopus 로고
    • Modelling an imperfect debugging pheonmenon in software reliability
    • PK Kapur, S. Younes, Modelling an imperfect debugging pheonmenon in software reliability, Microelectronics and Reliability, Vol.36, 1996, pp. 645-650.
    • (1996) Microelectronics and Reliability , vol.36 , pp. 645-650
    • Kapur, P.K.1    Younes, S.2
  • 7
    • 0029251631 scopus 로고
    • Software reliability growth model with error dependency
    • PK Kapur, S. Younes, Software reliability growth model with error dependency, Microelectronics and Reliability, Vol.35 (2), 1995, pp. 273-278.
    • (1995) Microelectronics and Reliability , vol.35 , Issue.2 , pp. 273-278
    • Kapur, P.K.1    Younes, S.2
  • 9
    • 23944474463 scopus 로고
    • Filtering algorithm based on innovations theory for white Gaussian plus colored observation noise
    • Seiichi Nakamori, Filtering algorithm based on innovations theory for white Gaussian plus colored observation noise, Journal of Information Science and Engineering, Vol.5, 1989, pp.157-166.
    • (1989) Journal of Information Science and Engineering , vol.5 , pp. 157-166
    • Nakamori, S.1
  • 10
    • 0037763340 scopus 로고
    • Estimation technique using covariance information in linear discrete-time systems
    • Seiichi Nakamori, Estimation technique using covariance information in linear discrete-time systems, Signal Processing, vol.43(2), 1995, pp. 169-179.
    • (1995) Signal Processing , vol.43 , Issue.2 , pp. 169-179
    • Nakamori, S.1
  • 11
    • 1342328675 scopus 로고    scopus 로고
    • Kalman filtering of consistent forward rate curves: A tool to estimate and model dynamically the term structure
    • Giuliano De Rossi, Kalman filtering of consistent forward rate curves: a tool to estimate and model dynamically the term structure, Journal of Empirical Finance, vol. 11(2), 2004, pp. 277-308.
    • (2004) Journal of Empirical Finance , vol.11 , Issue.2 , pp. 277-308
    • De Rossi, G.1
  • 12
    • 0011579983 scopus 로고    scopus 로고
    • Publishing House of Chinese Statistics
    • Wang ZL., Time series Analysis, Publishing House of Chinese Statistics, 2000.
    • (2000) Time Series Analysis
    • Wang, Z.L.1
  • 13
    • 0030187527 scopus 로고    scopus 로고
    • Estimation of multivariate signal by output autocovariance data in linear discrete-time systems
    • Seiichi Nakamori, Estimation of multivariate signal by output autocovariance data in linear discrete-time systems, Mathematical and Computer Modeling, Vol.24(1), 1996, pp.97-114.
    • (1996) Mathematical and Computer Modeling , vol.24 , Issue.1 , pp. 97-114
    • Nakamori, S.1
  • 17
    • 0030721104 scopus 로고    scopus 로고
    • Software Reliability Growth Analysis-Application of NHPP Models and Its Evaluation
    • HASE
    • Takamasa Nara, Masahiro Nakata, Akihiro Ooishi, Software Reliability Growth Analysis-Application of NHPP Models and Its Evaluation, IEEE Transactions on Reliability, HASE 1996, pp. 222-227.
    • (1996) IEEE Transactions on Reliability , pp. 222-227
    • Nara, T.1    Nakata, M.2    Ooishi, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.