메뉴 건너뛰기




Volumn 52, Issue 4, 2005, Pages 538-551

Asymmetric K-center Is log* H-hard to approximate

Author keywords

Approximation algorithms; Asymmetric k center; Hardness of approximation; Metric k center

Indexed keywords

ASYMMETRIC K-CENTER; HARDNESS OF APPROXIMATION; METRIC K-CENTER;

EID: 30544437241     PISSN: 00045411     EISSN: 00045411     Source Type: Journal    
DOI: 10.1145/1082036.1082038     Document Type: Article
Times cited : (44)

References (23)
  • 3
    • 0032058198 scopus 로고    scopus 로고
    • Proof verification and the hardness of approximation problems
    • ARORA, S., LUND, C., MOTWANI, R., SUDAN, M., AND SZEGEDY, M. 1998. Proof verification and the hardness of approximation problems. J. ACM 45, 3, 501-555.
    • (1998) J. ACM , vol.45 , Issue.3 , pp. 501-555
    • Arora, S.1    Lund, C.2    Motwani, R.3    Sudan, M.4    Szegedy, M.5
  • 4
    • 0031651077 scopus 로고    scopus 로고
    • Probabilistic checking of proofs: A new characterization of NP
    • ARORA, S., AND SAFRA, S. 1998. Probabilistic checking of proofs: A new characterization of NP. J. ACM 45, 1, 70-122.
    • (1998) J. ACM , vol.45 , Issue.1 , pp. 70-122
    • Arora, S.1    Safra, S.2
  • 10
    • 0022012617 scopus 로고
    • A simple heuristic for the p-center problem
    • DYER, M. E., AND FRIEZE, A. M. 1985. A simple heuristic for the p-center problem. Oper. Res. Lett. 3, 6, 285-288.
    • (1985) Oper. Res. Lett. , vol.3 , Issue.6 , pp. 285-288
    • Dyer, M.E.1    Frieze, A.M.2
  • 12
    • 30544450721 scopus 로고    scopus 로고
    • Using the FGLSS-reduction to prove inapproximability results for minimum vertex cover in hypergraphs
    • GOLDREICH, O. 2001. Using the FGLSS-reduction to prove inapproximability results for minimum vertex cover in hypergraphs. Electronic Colloquium on Computational Complexity (ECCC) 102.
    • (2001) Electronic Colloquium on Computational Complexity (ECCC) , pp. 102
    • Goldreich, O.1
  • 13
    • 0021938963 scopus 로고
    • Clustering to minimize the maximum intercluster distance
    • GONZALEZ, T. F. 1985. Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38, 2-3, 293-306.
    • (1985) Theoret. Comput. Sci. , vol.38 , Issue.2-3 , pp. 293-306
    • Gonzalez, T.F.1
  • 16
    • 0022753024 scopus 로고
    • A unified approach to approximation algorithms for bottleneck problems
    • HOCHBAUM, D. S., AND SHMOYS, D. B. 1986. A unified approach to approximation algorithms for bottleneck problems. J. ACM 33, 3, 533-550.
    • (1986) J. ACM , vol.33 , Issue.3 , pp. 533-550
    • Hochbaum, D.S.1    Shmoys, D.B.2
  • 17
    • 0036039361 scopus 로고    scopus 로고
    • Vertex cover on 4-regular hypergraphs is hard to approximate within 2 - ε
    • ACM, New York
    • HOLMERIN, J. 2002. Vertex cover on 4-regular hypergraphs is hard to approximate within 2 - ε In Proceedings of the 34th ACM Symposium on Theory of Computing. ACM, New York, pp. 544-552.
    • (2002) Proceedings of the 34th ACM Symposium on Theory of Computing , pp. 544-552
    • Holmerin, J.1
  • 18
    • 0018542104 scopus 로고
    • Easy and hard bottleneck location problems
    • HSU, W. L., AND NEMHAUSER, G. L. 1979. Easy and hard bottleneck location problems. Discr. Appl. Math. 1, 3, 209-215.
    • (1979) Discr. Appl. Math. , vol.1 , Issue.3 , pp. 209-215
    • Hsu, W.L.1    Nemhauser, G.L.2
  • 19
    • 0008159601 scopus 로고    scopus 로고
    • An O(log* n) approximation algorithm for the asymmetric p-center problem
    • PANIGRAHY, R., AND VISHWANATHAN, S. 1998. An O(log* n) approximation algorithm for the asymmetric p-center problem. J. Algorithms 27, 2, 259-268.
    • (1998) J. Algorithms , vol.27 , Issue.2 , pp. 259-268
    • Panigrahy, R.1    Vishwanathan, S.2
  • 20
    • 4544347793 scopus 로고
    • On the computational complexity of centers locating in a graph
    • PLESNÍK, J. 1980. On the computational complexity of centers locating in a graph. Aplik. Matem. 25, 6, 445-452.
    • (1980) Aplik. Matem. , vol.25 , Issue.6 , pp. 445-452
    • Plesník, J.1
  • 21
    • 0001226672 scopus 로고    scopus 로고
    • A parallel repetition theorem
    • RAZ, R. 1998. A parallel repetition theorem. SIAM J. Comput. 27, 3, 763-803.
    • (1998) SIAM J. Comput. , vol.27 , Issue.3 , pp. 763-803
    • Raz, R.1
  • 22
    • 0038887088 scopus 로고
    • Computing near-optimal solutions to combinatorial optimization problems
    • W. Cook, L. Lovasz, and P.D. Seymour, Eds. AMS
    • SHMOYS, D. B. 1995. Computing near-optimal solutions to combinatorial optimization problems. In Combinatorial Optimization, W. Cook, L. Lovasz, and P.D. Seymour, Eds. AMS, pp. 355-397.
    • (1995) Combinatorial Optimization , pp. 355-397
    • Shmoys, D.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.