메뉴 건너뛰기




Volumn 24, Issue 1, 2006, Pages 1-21

A batch arrival queue with a second optional service channel under N-policy

Author keywords

First essential service; MX G 1 queue; N policy; Optimal cost structure; Second optional service

Indexed keywords


EID: 30444456530     PISSN: 07362994     EISSN: None     Source Type: Journal    
DOI: 10.1080/07362990500397277     Document Type: Article
Times cited : (42)

References (32)
  • 3
    • 0029253439 scopus 로고
    • X/G/1 vacation model with N-policy: Heuristic interpretation of the mean waiting time
    • X/G/1 vacation model with N-policy: Heuristic interpretation of the mean waiting time. Journal of Operational Research Society 46:258-264.
    • (1995) Journal of Operational Research Society , vol.46 , pp. 258-264
    • Chae, K.C.1    Lee, H.W.2
  • 5
    • 3843105007 scopus 로고    scopus 로고
    • Analysis of a Poisson queue with a threshold policy and a grand vacation process: An analytic approach
    • Choudhury, G., and H. K. Baruah. 2000. Analysis of a Poisson queue with a threshold policy and a grand vacation process: An analytic approach. Sankhya, Series-B 62:303-316.
    • (2000) Sankhya, Series-B , vol.62 , pp. 303-316
    • Choudhury, G.1    Baruah, H.K.2
  • 6
    • 0034339408 scopus 로고    scopus 로고
    • X/G/1 queueing system with a setup period and a vacation period
    • X/G/1 queueing system with a setup period and a vacation period. Queueing System 36:23-28.
    • (2000) Queueing System , vol.36 , pp. 23-28
    • Choudhury, G.1
  • 7
    • 0036885563 scopus 로고    scopus 로고
    • A batch arrival queue with a vacation time under single vacation policy
    • Choudhury, G. 2002. A batch arrival queue with a vacation time under single vacation policy. Computer and Operation Research 29(14):1941-11955.
    • (2002) Computer and Operation Research , vol.29 , Issue.14 , pp. 1941-11955
    • Choudhury, G.1
  • 8
    • 84959609465 scopus 로고
    • The analysis of non Markovian stotchastic processes by inclusion of supplementary variables
    • Cox, D. R. 1955. The analysis of non Markovian stotchastic processes by inclusion of supplementary variables. Cambridge Philosophical Society 51:433-441.
    • (1955) Cambridge Philosophical Society , vol.51 , pp. 433-441
    • Cox, D.R.1
  • 9
    • 34250125289 scopus 로고
    • Queueing system with vacation: A survey
    • Doshi, B. T. 1986. Queueing system with vacation: A survey. Queueing System 1:29-66.
    • (1986) Queueing System , vol.1 , pp. 29-66
    • Doshi, B.T.1
  • 10
    • 0002480644 scopus 로고
    • Single server queue with vacations
    • Takagi, H., ed.. North Holland: Elsevier Science
    • Doshi, B. T. 1990. Single server queue with vacations. In: Takagi, H., ed. Stochastic Analysis of Computer and Communication System. North Holland: Elsevier Science, pp. 217-265.
    • (1990) Stochastic Analysis of Computer and Communication System , pp. 217-265
    • Doshi, B.T.1
  • 11
    • 0010598342 scopus 로고
    • Analysis of a two phase queueing system with general service times
    • Doshi, B. T. 1991. Analysis of a two phase queueing system with general service times. Operations Research Letters 10:265-272.
    • (1991) Operations Research Letters , vol.10 , pp. 265-272
    • Doshi, B.T.1
  • 12
    • 0022130542 scopus 로고
    • Stochastic decomposition in M/G/1 queue with generalized vacation
    • Fuhrmann, S. W., and R. B. Cooper. 1985. Stochastic decomposition in M/G/1 queue with generalized vacation. Operation Research 33:1117-1129.
    • (1985) Operation Research , vol.33 , pp. 1117-1129
    • Fuhrmann, S.W.1    Cooper, R.B.2
  • 13
    • 3843065858 scopus 로고    scopus 로고
    • Some aspects of a batch arrival Poisson queue with N-policy
    • Kalita, S., and G. Choudhury. 2002. Some aspects of a batch arrival Poisson queue with N-policy. Stochastic Modeling and Applications 5(2):21-32.
    • (2002) Stochastic Modeling and Applications , vol.5 , Issue.2 , pp. 21-32
    • Kalita, S.1    Choudhury, G.2
  • 14
    • 0022778687 scopus 로고
    • Oscillating random walk models for G1/G/1 vacation systems with Bernoulli schedules
    • Keilson, J., and L. D. Servi. 1986. Oscillating random walk models for G1/G/1 vacation systems with Bernoulli schedules. Journal of Applied Probability 23:790-802.
    • (1986) Journal of Applied Probability , vol.23 , pp. 790-802
    • Keilson, J.1    Servi, L.D.2
  • 20
    • 0034343563 scopus 로고    scopus 로고
    • An M/G/1 queue with second optional service
    • Madan, K. C. 2000. An M/G/1 queue with second optional service. Queuing Systems 34:37-46.
    • (2000) Queuing Systems , vol.34 , pp. 37-46
    • Madan, K.C.1
  • 21
    • 0036997828 scopus 로고    scopus 로고
    • Restricted admissiblity of batches in to an M/G/1 type bulk queue with modified Bernoulli schedule server vacations
    • Madan, K. C., and W. Abu-Dayyeh. 2002. Restricted admissiblity of batches in to an M/G/1 type bulk queue with modified Bernoulli schedule server vacations. ESSAIM: Probability and Statistics 6:113-125.
    • (2002) ESSAIM: Probability and Statistics , vol.6 , pp. 113-125
    • Madan, K.C.1    Abu-Dayyeh, W.2
  • 22
    • 0010217853 scopus 로고    scopus 로고
    • Single server queueing system with Poisson input: A review of some recent development
    • Balakrishnan, N., ed.. Boston, MA: Brikhausur
    • Medhi, J. 1997. Single server queueing system with Poisson input: A review of some recent development. In: Balakrishnan, N., ed. Advances in Combinatorial Methods and Application to Probability and Statistics. Boston, MA: Brikhausur, pp. 317-338.
    • (1997) Advances in Combinatorial Methods and Application to Probability and Statistics , pp. 317-338
    • Medhi, J.1
  • 23
    • 0036395248 scopus 로고    scopus 로고
    • A single server Poisson arrival queue with a second optional channel
    • Medhi, J. 2002. A single server Poisson arrival queue with a second optional channel. Queueing Systems 42:239-242.
    • (2002) Queueing Systems , vol.42 , pp. 239-242
    • Medhi, J.1
  • 24
    • 0001583496 scopus 로고
    • Some conditions for ergodicity and recurrence of Markov chains
    • Pakes, A. G. 1969. Some conditions for ergodicity and recurrence of Markov chains. Operations Research 17:1058-1061.
    • (1969) Operations Research , vol.17 , pp. 1058-1061
    • Pakes, A.G.1
  • 25
    • 38248999714 scopus 로고
    • X/G/1 queue with single and multiple vacations under LIFO service regime
    • X/G/1 queue with single and multiple vacations under LIFO service regime. Operations Research Letters 14:171-179.
    • (1993) Operations Research Letters , vol.14 , pp. 171-179
    • Rosenberg, E.1    Yechiali, U.2
  • 26
    • 0002174623 scopus 로고
    • A problem of service with non ordinary demand flow
    • Sahbazov, A. A. 1962. A problem of service with non ordinary demand flow. Soviet Mathematics Doklady 3:1000-1003.
    • (1962) Soviet Mathematics Doklady , vol.3 , pp. 1000-1003
    • Sahbazov, A.A.1
  • 27
    • 0344580006 scopus 로고
    • A two phase queueing system with servers vacations
    • Selvam, D. D., and V. Sivasankaran. 1994. A two phase queueing system with servers vacations. Operations Research Letters 15:63-168.
    • (1994) Operations Research Letters , vol.15 , pp. 63-168
    • Selvam, D.D.1    Sivasankaran, V.2
  • 30
    • 0022660231 scopus 로고
    • Control of the service process in queueing system
    • Teghem, J. 1986. Control of the service process in queueing system. European Journal of Operations Research 23:141-158.
    • (1986) European Journal of Operations Research , vol.23 , pp. 141-158
    • Teghem, J.1
  • 31
    • 0347940028 scopus 로고
    • On a decomposition result for a class of vacation queueing system
    • Teghem, J. 1990. On a decomposition result for a class of vacation queueing system. Journal of Applied Probability 27:227-231.
    • (1990) Journal of Applied Probability , vol.27 , pp. 227-231
    • Teghem, J.1
  • 32
    • 0020103086 scopus 로고
    • Poisson arrival see time average
    • Wolff, R. W. 1982. Poisson arrival see time average. Operations Research 30:223-231.
    • (1982) Operations Research , vol.30 , pp. 223-231
    • Wolff, R.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.