메뉴 건너뛰기




Volumn 24, Issue 1, 2006, Pages 79-95

Existence and uniqueness results for neutral SDEs in Hilbert spaces

Author keywords

Existence and uniqueness; Neutral stochastic differential equations; Non Lipschitz condition; Picard approximations

Indexed keywords


EID: 30444450280     PISSN: 07362994     EISSN: None     Source Type: Journal    
DOI: 10.1080/07362990500397582     Document Type: Article
Times cited : (42)

References (22)
  • 1
    • 15244352778 scopus 로고    scopus 로고
    • Existence of solutions of nonlinear neutral stochastic differential inclusions in a Hilbert space
    • Balasubramaniam, P., and D. Vinayagam. 2005. Existence of solutions of nonlinear neutral stochastic differential inclusions in a Hilbert space. Stoch. Anal. Appl. 23(1):137-151.
    • (2005) Stoch. Anal. Appl. , vol.23 , Issue.1 , pp. 137-151
    • Balasubramaniam, P.1    Vinayagam, D.2
  • 2
    • 0036330458 scopus 로고    scopus 로고
    • Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients
    • Barbu, D., and G. Bocşan. 2002. Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients. Czechoslovak Mathematical Journal 52:87-95.
    • (2002) Czechoslovak Mathematical Journal , vol.52 , pp. 87-95
    • Barbu, D.1    Bocşan, G.2
  • 4
    • 0000313984 scopus 로고
    • On the successive approximation of solutions of stochastic differential equations
    • Yamada, T. 1981. On the successive approximation of solutions of stochastic differential equations. J. Math. Kyoto Univ. 21:501-515.
    • (1981) J. Math. Kyoto Univ. , vol.21 , pp. 501-515
    • Yamada, T.1
  • 5
    • 0040769071 scopus 로고
    • Autonomous semilinear stochastic Volterra integrodifferential equations in Hilbert spaces
    • Govindan, T.E. 1994. Autonomous semilinear stochastic Volterra integrodifferential equations in Hilbert spaces. Dynam. Sys. Appl. 3:51-74.
    • (1994) Dynam. Sys. Appl. , vol.3 , pp. 51-74
    • Govindan, T.E.1
  • 6
    • 0141653761 scopus 로고    scopus 로고
    • Stability of mild solutions of stochastic evolution equations with variable delay
    • Govindan, T.E. 2003. Stability of mild solutions of stochastic evolution equations with variable delay. Stochastic Analysis and Applications 21(5):1059-1077.
    • (2003) Stochastic Analysis and Applications , vol.21 , Issue.5 , pp. 1059-1077
    • Govindan, T.E.1
  • 7
    • 0036020751 scopus 로고    scopus 로고
    • Remarks on the existence and approximation for semilinear stochastic differential equations in Hubert spaces
    • Boukfaoui, Y. El., and M. Erraoui. 2002. Remarks on the existence and approximation for semilinear stochastic differential equations in Hubert spaces. Stochastic Anal. Appl. 20:495-518.
    • (2002) Stochastic Anal. Appl. , vol.20 , pp. 495-518
    • Boukfaoui, Y.El.1    Erraoui, M.2
  • 10
    • 0009008657 scopus 로고    scopus 로고
    • On the exponential stability in mean square of neutral stochastic functional differential equations
    • Liu, K., and X. Xia. 1999. On the exponential stability in mean square of neutral stochastic functional differential equations. Systems Control Lett. 37(4):207-215.
    • (1999) Systems Control Lett. , vol.37 , Issue.4 , pp. 207-215
    • Liu, K.1    Xia, X.2
  • 11
    • 4944255103 scopus 로고    scopus 로고
    • Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces
    • Mahmudov, N.I. 2003. Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces. SIAM J. Control Optim. 42(5): 1604-1622.
    • (2003) SIAM J. Control Optim. , vol.42 , Issue.5 , pp. 1604-1622
    • Mahmudov, N.I.1
  • 12
    • 0346903407 scopus 로고    scopus 로고
    • Controllability of semilinear stochastic systems in Hilbert spaces
    • Mahmudov, N.I. 2003. Controllability of semilinear stochastic systems in Hilbert spaces. J. Math. Anal. Appl. 288(1):197-211.
    • (2003) J. Math. Anal. Appl. , vol.288 , Issue.1 , pp. 197-211
    • Mahmudov, N.I.1
  • 14
    • 0004339037 scopus 로고    scopus 로고
    • Razumikhin-type theorems for neutral stochastic functional-differential equations
    • Mao, X., A. Rodkina, and N. Koroleva. 1998. Razumikhin-type theorems for neutral stochastic functional-differential equations. Funct. Differ. Equ. 5(1-2): 195-211.
    • (1998) Funct. Differ. Equ. , vol.5 , Issue.1-2 , pp. 195-211
    • Mao, X.1    Rodkina, A.2    Koroleva, N.3
  • 15
    • 0006023401 scopus 로고    scopus 로고
    • Exponential stability in mean square of neutral stochastic differential difference equations
    • Liao, X.X., and X. Mao. 1999. Exponential stability in mean square of neutral stochastic differential difference equations. Dynam. Contin. Discrete Impuls. Systems 6(4):569-586.
    • (1999) Dynam. Contin. Discrete Impuls. Systems , vol.6 , Issue.4 , pp. 569-586
    • Liao, X.X.1    Mao, X.2
  • 16
    • 28244454915 scopus 로고    scopus 로고
    • Asymptotic properties of neutral stochastic differential delay equations
    • Mao, X. 2000. Asymptotic properties of neutral stochastic differential delay equations. Stochastics Rep. 68(3-4):273-295.
    • (2000) Stochastics Rep. , vol.68 , Issue.3-4 , pp. 273-295
    • Mao, X.1
  • 17
    • 0031488287 scopus 로고    scopus 로고
    • Razumikhin-type theorems on exponential stability of neutral stochastic functional-differential equations
    • Mao, X. 1997. Razumikhin-type theorems on exponential stability of neutral stochastic functional-differential equations. SIAM J. Math. Anal. 28(2):389-401.
    • (1997) SIAM J. Math. Anal. , vol.28 , Issue.2 , pp. 389-401
    • Mao, X.1
  • 18
    • 30444447818 scopus 로고    scopus 로고
    • Second-order neutral stochastic evolution equations with heredity
    • McKibben, M. 2004. Second-order neutral stochastic evolution equations with heredity. J. Appl. Math. Stoch. Anal. 2004(2): 177-192.
    • (2004) J. Appl. Math. Stoch. Anal. , vol.2004 , Issue.2 , pp. 177-192
    • McKibben, M.1
  • 19
    • 0021442320 scopus 로고
    • On existence and uniqueness of solution of stochastic differential equations with heredity
    • Rodkina, A.E. 1984. On existence and uniqueness of solution of stochastic differential equations with heredity. Stochastics Monographs 12:187-200.
    • (1984) Stochastics Monographs , vol.12 , pp. 187-200
    • Rodkina, A.E.1
  • 20
    • 38249010994 scopus 로고
    • Successive approximations to solutions of stochastic differential equations
    • Taniguchi, T. 1992. Successive approximations to solutions of stochastic differential equations. J. Differ. Equations 96:152-169.
    • (1992) J. Differ. Equations , vol.96 , pp. 152-169
    • Taniguchi, T.1
  • 21
    • 0021521602 scopus 로고
    • Successive approximations for solutions of stochastic integral equations of Volterra type
    • Tudor, C. 1984. Successive approximations for solutions of stochastic integral equations of Volterra type. J. Math. Anal. Appl. 104:27-37.
    • (1984) J. Math. Anal. Appl. , vol.104 , pp. 27-37
    • Tudor, C.1
  • 22
    • 0013402072 scopus 로고
    • Semilinear stochastic evolution equations with monotone nonlinearities
    • Zangeneh, B.Z. 1995. Semilinear stochastic evolution equations with monotone nonlinearities. Stochastics and Stochastic Reports 53:129-174.
    • (1995) Stochastics and Stochastic Reports , vol.53 , pp. 129-174
    • Zangeneh, B.Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.