-
3
-
-
22244471382
-
Fractional kinetic equation driven by Gaussian or infinitely divisible noise
-
Angulo, J.M., V.V. Anh, R. McVinish, and M.D. Ruiz-Medina. 2005. Fractional kinetic equation driven by Gaussian or infinitely divisible noise. Adv. Appl. Prob. 37:366-392.
-
(2005)
Adv. Appl. Prob.
, vol.37
, pp. 366-392
-
-
Angulo, J.M.1
Anh, V.V.2
McVinish, R.3
Ruiz-Medina, M.D.4
-
4
-
-
0039030378
-
Estimation and filtering of fractional generalized random fields
-
Angulo, J. M., M.D. Ruiz-Medina, and V.V. Anh. 2000. Estimation and filtering of fractional generalized random fields. J. Austral. Math. Soc., Series A 69:336-361.
-
(2000)
J. Austral. Math. Soc., Series A
, vol.69
, pp. 336-361
-
-
Angulo, J.M.1
Ruiz-Medina, M.D.2
Anh, V.V.3
-
5
-
-
0034427802
-
Fractional diffusion and fractional heat equation
-
Angulo, J.M., M.D. Ruiz-Medina, V. V. Anh, and W. Grecksch. 2000. Fractional diffusion and fractional heat equation. Adv. Appl. Prob. 32: 1077-1099.
-
(2000)
Adv. Appl. Prob.
, vol.32
, pp. 1077-1099
-
-
Angulo, J.M.1
Ruiz-Medina, M.D.2
Anh, V.V.3
Grecksch, W.4
-
7
-
-
0035609328
-
Differential representation and Markov property of generalized random fields
-
Anh, V.V., M.D. Ruiz-Medina, and J.M. Angulo. 2001. Differential representation and Markov property of generalized random fields. Stoch. Anal. Appl. 19:481-498.
-
(2001)
Stoch. Anal. Appl.
, vol.19
, pp. 481-498
-
-
Anh, V.V.1
Ruiz-Medina, M.D.2
Angulo, J.M.3
-
8
-
-
0001428463
-
Random walks, electrical resistance, and nested fractals
-
Pitman Research Notes in Mathematics Series 283, In eds. K.D. Elworthy and N. Ikeda. Essex: Longman
-
Barlow, M.T. 1993. Random walks, electrical resistance, and nested fractals. Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals. Pitman Research Notes in Mathematics Series 283, In eds. K.D. Elworthy and N. Ikeda, 131-157. Essex: Longman.
-
(1993)
Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals
, pp. 131-157
-
-
Barlow, M.T.1
-
9
-
-
0007074996
-
Fractals and diffusion-limited aggregation
-
Barlow, M.T. 1993b. Fractals and diffusion-limited aggregation. Bull. Sci. Math. 117:161-169.
-
(1993)
Bull. Sci. Math.
, vol.117
, pp. 161-169
-
-
Barlow, M.T.1
-
10
-
-
0000869325
-
Transition densities for Browninan motion on the Sierpinski carpet
-
Barlow, M.T., and R.F. Bass. 1992. Transition densities for Browninan motion on the Sierpinski carpet. Prob. Theor. Rel. Fields 91:307-330.
-
(1992)
Prob. Theor. Rel. Fields
, vol.91
, pp. 307-330
-
-
Barlow, M.T.1
Bass, R.F.2
-
12
-
-
3242750610
-
Limit theorem for continuous-time random walks with two time scales
-
Becker-Kern, F., M.M. Meerschaert, and H.P. Scheffler. 2004. Limit theorem for continuous-time random walks with two time scales. J. Appl. Prob. 41:455-466.
-
(2004)
J. Appl. Prob.
, vol.41
, pp. 455-466
-
-
Becker-Kern, F.1
Meerschaert, M.M.2
Scheffler, H.P.3
-
14
-
-
0040307478
-
Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications
-
Bouchaud, J.-P., and A. Georges. 1990. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Physics Repons (Review Section of Physics Letters) 195:127-293.
-
(1990)
Physics Repons (Review Section of Physics Letters)
, vol.195
, pp. 127-293
-
-
Bouchaud, J.-P.1
Georges, A.2
-
16
-
-
0141799912
-
Heat kernel estimates for stable-like processes on d-sets
-
Chen, Z.-Q., and T. Kumagai. 2003. Heat kernel estimates for stable-like processes on d-sets. Stoch. Proc. Appl. 108:27-62.
-
(2003)
Stoch. Proc. Appl.
, vol.108
, pp. 27-62
-
-
Chen, Z.-Q.1
Kumagai, T.2
-
19
-
-
0001582569
-
Random walks and diffusion on fractals
-
(IMA) Mathematics and Applications 8. In ed. H. Kesten. New York: Springer-Verlag
-
Goldstein, S. 1987. Random walks and diffusion on fractals. Percolation Theory and Ergodic Theory of Infinite Particle Systems. (IMA) Mathematics and Applications 8. In ed. H. Kesten, 121-129. New York: Springer-Verlag.
-
(1987)
Percolation Theory and Ergodic Theory of Infinite Particle Systems
, pp. 121-129
-
-
Goldstein, S.1
-
20
-
-
0034702079
-
Modelling transport in disordered media via diffusion on fractals
-
Hambly, B., and O.D. Jones. 2000. Modelling transport in disordered media via diffusion on fractals. Mathematical and Computer Modelling 31:129-142.
-
(2000)
Mathematical and Computer Modelling
, vol.31
, pp. 129-142
-
-
Hambly, B.1
Jones, O.D.2
-
23
-
-
0038152499
-
Lévy-type processes and pseudodifferential operators
-
eds. O. Barndorff-Nielsen, T. Mikosch, and S. Resnick. Boston: Birkhauser
-
Jacob, N., and R.L. Schilling. 2001. Lévy-type processes and pseudodifferential operators. Lévy Processes: Theory and Applications. In eds. O. Barndorff-Nielsen, T. Mikosch, and S. Resnick, 139-167. Boston: Birkhauser.
-
(2001)
Lévy Processes: Theory and Applications
, pp. 139-167
-
-
Jacob, N.1
Schilling, R.L.2
-
24
-
-
0034408908
-
Dirichlet forms and Brownian motion penetrating fractals
-
Jonsson, A. 2000. Dirichlet forms and Brownian motion penetrating fractals. Potential Analysis 13:69-80.
-
(2000)
Potential Analysis
, vol.13
, pp. 69-80
-
-
Jonsson, A.1
-
25
-
-
77951516336
-
A harmonic calculus on the Sierpinski spaces
-
Kigami, J. 1989. A harmonic calculus on the Sierpinski spaces. Japan J. Appl. Math. 6:259-290.
-
(1989)
Japan J. Appl. Math.
, vol.6
, pp. 259-290
-
-
Kigami, J.1
-
26
-
-
0001374964
-
Harmonic metric and Dirichlet form on the Sierpinski gasket
-
Pitman Research Notes in Mathematics Series 283. In eds. K.D. Elworthy and N. Ikeda. Essex: Longman
-
Kigami, J. 1993. Harmonic metric and Dirichlet form on the Sierpinski gasket. Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals. Pitman Research Notes in Mathematics Series 283. In eds. K.D. Elworthy and N. Ikeda, 201-218. Essex: Longman.
-
(1993)
Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals
, pp. 201-218
-
-
Kigami, J.1
-
27
-
-
0013671278
-
Construction and some properties of a class of non-symmetric diffusion processes on the Sierpinski gasket
-
Pitman Research Notes in Mathematics Series 283. In eds. K.D. Elworthy and N. Ikeda. Essex: Longman
-
Kumagai, T. 1993. Construction and some properties of a class of non-symmetric diffusion processes on the Sierpinski gasket. Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals. Pitman Research Notes in Mathematics Series 283. In eds. K.D. Elworthy and N. Ikeda, 219-247. Essex: Longman.
-
(1993)
Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals
, pp. 219-247
-
-
Kumagai, T.1
-
28
-
-
30444457585
-
Rotation invariance and characterization of a class of self-similar diffusion processes on the Sierpinski gasket
-
eds. K. Takahashi, New York: Plenum
-
Kumagai, T. 1995. Rotation invariance and characterization of a class of self-similar diffusion processes on the Sierpinski gasket. Algorithms, Fractals, and Dynamics. In eds. K. Takahashi, 131-142, New York: Plenum.
-
(1995)
Algorithms, Fractals, and Dynamics
, pp. 131-142
-
-
Kumagai, T.1
-
32
-
-
0009946774
-
Brownian motion penetrating the Sierpinski gasket
-
Pitman Research Notes in Mathematics Series 283. In eds. K.D. Elworthy and N. Ikeda. Essex: Longman
-
Lindstrom, T. 1993. Brownian motion penetrating the Sierpinski gasket. Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals. Pitman Research Notes in Mathematics Series 283. In eds. K.D. Elworthy and N. Ikeda, 248-278. Essex: Longman.
-
(1993)
Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals
, pp. 248-278
-
-
Lindstrom, T.1
-
33
-
-
0034502929
-
Fractional calculus and continuous-time finance II: The waiting-time distribution
-
Mainardi, F., M. Raberto, R. Gorenflo, and E. Scalas. 2000. Fractional calculus and continuous-time finance II: the waiting-time distribution. Physica A 287:468-481.
-
(2000)
Physica A
, vol.287
, pp. 468-481
-
-
Mainardi, F.1
Raberto, M.2
Gorenflo, R.3
Scalas, E.4
-
34
-
-
0002641421
-
The random walk's guide to anomalous diffusion: A fractional dynamic approach
-
Metzler, R., and J. Klafter. 2000. The random walk's guide to anomalous diffusion: A fractional dynamic approach. Physical Reports 339:1-72.
-
(2000)
Physical Reports
, vol.339
, pp. 1-72
-
-
Metzler, R.1
Klafter, J.2
-
36
-
-
0037276242
-
Fractional generalized random fields on bounded domains
-
M.D. Ruiz-Medina, J.M. Angulo, and V.V. Anh. 2003. Fractional generalized random fields on bounded domains. Stoch. Anal. Appl. 21:465-492.
-
(2003)
Stoch. Anal. Appl.
, vol.21
, pp. 465-492
-
-
Ruiz-Medina, M.D.1
Angulo, J.M.2
Anh, V.V.3
-
37
-
-
0002716213
-
Stochastic fractional-order differential models with fractal boundary conditions
-
M.D. Ruiz-Medina, V. V. Anh, and J.M. Angulo. 2001. Stochastic fractional-order differential models with fractal boundary conditions. Stat. & Prob. Lett. 54:47-60.
-
(2001)
Stat. & Prob. Lett.
, vol.54
, pp. 47-60
-
-
Ruiz-Medina, M.D.1
Anh, V.V.2
Angulo, J.M.3
-
42
-
-
0034275979
-
Fractional calculus and continuous-time finance
-
Scalas, E., R. Gorenflo, and F. Mainardi. 2000. Fractional calculus and continuous-time finance. Physica A 284:376-384.
-
(2000)
Physica A
, vol.284
, pp. 376-384
-
-
Scalas, E.1
Gorenflo, R.2
Mainardi, F.3
-
43
-
-
0032286130
-
Growth and Hölder conditions for the sample paths of Feller processes
-
Schilling, R.L. 1998. Growth and Hölder conditions for the sample paths of Feller processes. Probab. Theor. Rel. Fields 112:565-611.
-
(1998)
Probab. Theor. Rel. Fields
, vol.112
, pp. 565-611
-
-
Schilling, R.L.1
-
45
-
-
0000336716
-
Protein dynamics at low temperatures, J Chem
-
Schlichter, J., J. Friedrich, L. Herenyi, and J. Fidy. 2000. Protein dynamics at low temperatures, J Chem. Phys. 112:3045-3050.
-
(2000)
Phys.
, vol.112
, pp. 3045-3050
-
-
Schlichter, J.1
Friedrich, J.2
Herenyi, L.3
Fidy, J.4
-
48
-
-
9744251564
-
Riesz potentials and Liouville operators on fractals
-
Zähle, M. 2004. Riesz potentials and Liouville operators on fractals. Potential Analysis 21:193-208.
-
(2004)
Potential Analysis
, vol.21
, pp. 193-208
-
-
Zähle, M.1
|