-
1
-
-
0005234162
-
Hamiltonian formulation of inviscid flows with free boundaries
-
Abarbanel H D, Brown R, and Yang Y M, Hamiltonian formulation of inviscid flows with free boundaries, Phys. Fluids 31 (1998), 2802-2809.
-
(1998)
Phys. Fluids
, vol.31
, pp. 2802-2809
-
-
Abarbanel, H.D.1
Brown, R.2
Yang, Y.M.3
-
2
-
-
0000542179
-
On periodic water-waves and their convergence to solitary waves in the long-wave limit
-
Amick C J and Toland J F, On periodic water-waves and their convergence to solitary waves in the long-wave limit, Philos. Trans. Roy. Soc. London Ser. A 303 (1981), 633-669.
-
(1981)
Philos. Trans. Roy. Soc. London Ser. A
, vol.303
, pp. 633-669
-
-
Amick, C.J.1
Toland, J.F.2
-
3
-
-
0027009632
-
Uniformly travelling water waves from a dynamical systems viewpoint: Some insights into bifurcations from Stokes' family
-
Baesens C and MacKay R S, Uniformly travelling water waves from a dynamical systems viewpoint: some insights into bifurcations from Stokes' family, J. Fluid Mech. 241 (1992), 333-347.
-
(1992)
J. Fluid Mech.
, vol.241
, pp. 333-347
-
-
Baesens, C.1
MacKay, R.S.2
-
4
-
-
0020292888
-
Hamiltonian structure, symmetries and conservation laws for water waves
-
Benjamin T B and Olver P J, Hamiltonian structure, symmetries and conservation laws for water waves, J. Fluid Mech. 125 (1982), 137-185.
-
(1982)
J. Fluid Mech.
, vol.125
, pp. 137-185
-
-
Benjamin, T.B.1
Olver, P.J.2
-
5
-
-
0027009769
-
Spatial Hamiltonian structure, energy flux and the water-wave problem
-
Bridges T J, Spatial Hamiltonian structure, energy flux and the water-wave problem, Proc. Roy. Soc. London Ser. A 439 (1992), 297-315.
-
(1992)
Proc. Roy. Soc. London Ser. A
, vol.439
, pp. 297-315
-
-
Bridges, T.J.1
-
6
-
-
34249769656
-
Hamiltonian spatial structure for three-dimensional water waves in a moving frame of reference
-
Bridges T J, Hamiltonian spatial structure for three-dimensional water waves in a moving frame of reference, J. Nonlinear Sci. 4 (1994), 221-251.
-
(1994)
J. Nonlinear Sci.
, vol.4
, pp. 221-251
-
-
Bridges, T.J.1
-
7
-
-
0039896325
-
On the deep water wave motion
-
Constantin A, On the deep water wave motion, J. Phys. A 34 (2001), 1405-1417.
-
(2001)
J. Phys. A
, vol.34
, pp. 1405-1417
-
-
Constantin, A.1
-
8
-
-
0035900644
-
Edge waves along a sloping beach
-
Constantin A, Edge waves along a sloping beach, J. Phys. A 34 (2001), 9723-9731.
-
(2001)
J. Phys. A
, vol.34
, pp. 9723-9731
-
-
Constantin, A.1
-
9
-
-
69649107940
-
Comment on "Steep sharp-crested gravity waves on deep water"
-
Art. No. 069402
-
Constantin A, Comment on "Steep sharp-crested gravity waves on deep water", Phys. Rev. Lett. 93 (2004), Art. No. 069402.
-
(2004)
Phys. Rev. Lett.
, vol.93
-
-
Constantin, A.1
-
10
-
-
1242299759
-
Symmetry of steady periodic surface water waves with vorticity
-
Constantin A and Escher J, Symmetry of steady periodic surface water waves with vorticity, J. Fluid Mech. 498 (2004), 171-181.
-
(2004)
J. Fluid Mech.
, vol.498
, pp. 171-181
-
-
Constantin, A.1
Escher, J.2
-
11
-
-
0038391364
-
Exact periodic traveling water waves with vorticity
-
Constantin A and Strauss W, Exact periodic traveling water waves with vorticity, C. R. Math. Acad. Sci. Paris 335 (2002), 797-800.
-
(2002)
C. R. Math. Acad. Sci. Paris
, vol.335
, pp. 797-800
-
-
Constantin, A.1
Strauss, W.2
-
12
-
-
1242319077
-
Exact steady periodic water waves with vorticity
-
Constantin A and Strauss W, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math. 57 (2004), 481-527.
-
(2004)
Comm. Pure Appl. Math.
, vol.57
, pp. 481-527
-
-
Constantin, A.1
Strauss, W.2
-
13
-
-
30444438571
-
Water waves, Hamiltonian systems and Cauchy integrals
-
Minneapolis, MN
-
Craig W, Water waves, Hamiltonian systems and Cauchy integrals, in Microlocal Analysis and Nonlinear Waves (Minneapolis, MN, 1988-1989), 37-45,
-
(1988)
Microlocal Analysis and Nonlinear Waves
, pp. 37-45
-
-
Craig, W.1
-
14
-
-
0039244239
-
-
Springer, New York
-
IMA Vol. Math. Appl., 30, Springer, New York, 1991.
-
(1991)
IMA Vol. Math. Appl.
, vol.30
-
-
-
15
-
-
84972192041
-
Steady surface waves on water of finite depth with constant vorticity
-
Da Silva T A F and Peregrine D H, Steep, steady surface waves on water of finite depth with constant vorticity, J. Fluid Mech. 195 (1988), 281-302.
-
(1988)
J. Fluid Mech.
, vol.195
, pp. 281-302
-
-
Da Silva, T.A.F.1
Steep, P.D.H.2
-
17
-
-
0942273414
-
-
World Sci. Publishing, River Edge, NJ
-
Adv. Ser. Nonlinear Dynam., 7, World Sci. Publishing, River Edge, NJ, 1995.
-
(1995)
Adv. Ser. Nonlinear Dynam.
, vol.7
-
-
-
18
-
-
0031375381
-
On variational formulations for steady water waves
-
Groves M D and Toland J F, On variational formulations for steady water waves, Arch. Rational Mech. Anal. 137 (1997), 203-226.
-
(1997)
Arch. Rational Mech. Anal.
, vol.137
, pp. 203-226
-
-
Groves, M.D.1
Toland, J.F.2
-
19
-
-
84971113623
-
The derivation of the equations of motion of an ideal fluid by Hamilton's principle
-
Herivel J W, The derivation of the equations of motion of an ideal fluid by Hamilton's principle, Proc. Cambridge Philos. Soc. 51 (1955), 344-349.
-
(1955)
Proc. Cambridge Philos. Soc.
, vol.51
, pp. 344-349
-
-
Herivel, J.W.1
-
22
-
-
0000454190
-
The Hamiltonian structure for dynamic free boundary problems
-
Lewis D, Marsden J, Montgomery, R, and Ratiu T, The Hamiltonian structure for dynamic free boundary problems, Physica D 18 (1986), 391-404.
-
(1986)
Physica D
, vol.18
, pp. 391-404
-
-
Lewis, D.1
Marsden, J.2
Montgomery, R.3
Ratiu, T.4
-
24
-
-
85095799018
-
Well-posedness for the motion of an incompressible liquid with free surface boundary
-
to appear
-
Lindblad H, Well-posedness for the motion of an incompressible liquid with free surface boundary, Ann. Math, to appear.
-
Ann. Math
-
-
Lindblad, H.1
-
26
-
-
0001069169
-
Mass transport in the boundary layer at a free oscillating surface
-
Longuet-Higgins M S, Mass transport in the boundary layer at a free oscillating surface, J. Fluid Mech. 8 (1960), 293-306.
-
(1960)
J. Fluid Mech.
, vol.8
, pp. 293-306
-
-
Longuet-Higgins, M.S.1
-
27
-
-
84974513241
-
A variational principle for a fluid with a free surface
-
Luke J C, A variational principle for a fluid with a free surface, J. Fluid Mech. 27 (1967), 395-397.
-
(1967)
J. Fluid Mech.
, vol.27
, pp. 395-397
-
-
Luke, J.C.1
-
28
-
-
21844498358
-
An unconstrained Hamiltonian formulation for incompressible fluid flow
-
Maddocks J H and Pego R L, An unconstrained Hamiltonian formulation for incompressible fluid flow, Comm. Math. Phys. 170 (1995), 207-217.
-
(1995)
Comm. Math. Phys.
, vol.170
, pp. 207-217
-
-
Maddocks, J.H.1
Pego, R.L.2
-
29
-
-
84974055944
-
A note regarding "on Hamilton's principle for surface waves"
-
Milder D M, A note regarding "on Hamilton's principle for surface waves", J. Fluid Mech. 83 (1977), 159-161.
-
(1977)
J. Fluid Mech.
, vol.83
, pp. 159-161
-
-
Milder, D.M.1
-
30
-
-
84974144443
-
On Hamilton's principle for surface waves
-
Miles J W, On Hamilton's principle for surface waves, J. Fluid Mech. 83 (1977), 153-158.
-
(1977)
J. Fluid Mech.
, vol.83
, pp. 153-158
-
-
Miles, J.W.1
-
31
-
-
0026808121
-
An explicit Hamiltonian formulation of surface waves in water of finite depth
-
Radder A C, An explicit Hamiltonian formulation of surface waves in water of finite depth, J. Fluid Mech. 237 (1992), 435-455.
-
(1992)
J. Fluid Mech.
, vol.237
, pp. 435-455
-
-
Radder, A.C.1
-
34
-
-
0001834355
-
Stability of periodic waves of finite amplitude on the surface of a deep fluid
-
Zakharov V E, Stability of periodic waves of finite amplitude on the surface of a deep fluid, Zh. Prikl. Mekh. Tekh. Fiz. 9 (1968), 86-94.
-
(1968)
Zh. Prikl. Mekh. Tekh. Fiz.
, vol.9
, pp. 86-94
-
-
Zakharov, V.E.1
-
35
-
-
0007107074
-
-
English translation
-
(English translation: J. Appl. Mech. Tech. Phys. 2, 190-194.)
-
J. Appl. Mech. Tech. Phys.
, vol.2
, pp. 190-194
-
-
|