메뉴 건너뛰기




Volumn 2, Issue 4, 1996, Pages 497-524

Fourier nonlinear Galerkin method for Navier-Stokes equations

Author keywords

[No Author keywords available]

Indexed keywords


EID: 3042945245     PISSN: 10780947     EISSN: None     Source Type: Journal    
DOI: 10.3934/dcds.1996.2.497     Document Type: Article
Times cited : (3)

References (15)
  • 1
    • 0000640733 scopus 로고
    • Inertial Manifolds for Nonlinear Evolutionary Equations
    • C. Foias, G. R. Sell, R. Temam, Inertial Manifolds for Nonlinear Evolutionary Equations, J. Diff. Eqs., 73 (1988), 309-353.
    • (1988) J. Diff. Eqs. , vol.73 , pp. 309-353
    • Foias, C.1    Sell, G.R.2    Temam, R.3
  • 4
    • 0003872101 scopus 로고
    • Navier-Stokes Equation and Nonlinear Functional Analysis
    • SIAM, Philadelphia
    • R. Temam, Navier-Stokes Equation and Nonlinear Functional Analysis, CBNS-NSF Conference in Appl. Math., SIAM, Philadelphia, 1983.
    • (1983) CBNS-NSF Conference in Appl. Math.
    • Temam, R.1
  • 6
    • 0003460899 scopus 로고
    • Geometric Theory of Parabolic Equations
    • Springer- Verlag, Berlin
    • D. Henry, "Geometric Theory of Parabolic Equations", Lect. Notes. Math., vol. 840, Springer- Verlag, Berlin, 1983.
    • (1983) Lect. Notes. Math. , vol.840
    • Henry, D.1
  • 7
    • 0348110762 scopus 로고
    • On the Semi-discrete Finite Element Approximation for the Nonstationary Navier-Stokes Equation
    • Univ. of Tokyo Sec. IA Math
    • H. Okamoto, On the Semi-discrete Finite Element Approximation for the Nonstationary Navier-Stokes Equation, J. Fac. Sci., Univ. of Tokyo Sec. IA Math, 29 (1982), 613-652.
    • (1982) J. Fac. Sci. , vol.29 , pp. 613-652
    • Okamoto, H.1
  • 8
    • 0027609038 scopus 로고
    • Convergence of Fourier Methods for the Navier-Stokes Equations
    • E. Weinan, Convergence of Fourier Methods for the Navier-Stokes Equations, SIAM J. Numer. Anal., 30 (1993), 650-674.
    • (1993) SIAM J. Numer. Anal. , vol.30 , pp. 650-674
    • Weinan, E.1
  • 9
    • 0000752968 scopus 로고
    • Error Estimates on a New Nonlinear Galerkin Method Based on Two-Grid Finite Elements
    • M. Marion, J. Xu, Error Estimates on a New Nonlinear Galerkin Method Based on Two-Grid Finite Elements, SIAM J. Numer. Anal., 32 (1995), 1170-1184.
    • (1995) SIAM J. Numer. Anal. , vol.32 , pp. 1170-1184
    • Marion, M.1    Xu, J.2
  • 10
    • 0007117533 scopus 로고
    • Nonlinear Galerkin Methods: The Finite Elements Case
    • M. Marion, R. Temam, Nonlinear Galerkin Methods: The Finite Elements Case, Numer. Math., 57 (1990), 205-226.
    • (1990) Numer. Math. , vol.57 , pp. 205-226
    • Marion, M.1    Temam, R.2
  • 11
    • 0000547750 scopus 로고
    • Nonlinear Galerkin Methods
    • M. Marion and R. Temam, Nonlinear Galerkin Methods, SIAM J. Numer. Anal., 21 (1989), 1139-1157.
    • (1989) SIAM J. Numer. Anal. , vol.21 , pp. 1139-1157
    • Marion, M.1    Temam, R.2
  • 12
    • 0003560988 scopus 로고
    • D. Reidel Publ. Company, Dordrecht, Holland
    • Vasile I. Istratescu, "Fixed Point Theory", D. Reidel Publ. Company, Dordrecht, Holland, 1981.
    • (1981) Fixed Point Theory
    • Istratescu, V.I.1
  • 14
    • 0001012617 scopus 로고
    • Nonlinear Galerkin Method Using Chebyshev and Legendre Polynomials I. The One-Dimensional Case
    • J. Shen & R. Temam, Nonlinear Galerkin Method Using Chebyshev and Legendre Polynomials I. The One-Dimensional Case, SIAM J. Numer. Anal., 32 (1995),215-234.
    • (1995) SIAM J. Numer. Anal. , vol.32 , pp. 215-234
    • Shen, J.1    Temam, R.2
  • 15
    • 0000966077 scopus 로고
    • Finite Element Approximation of the Nonstationary Navier-Stokes Problem. I. Regularity of Solutions and Second-Order Error Estimates for Spatial Discretization
    • J. G. Heywood and R. Rannacher, Finite Element Approximation of the Nonstationary Navier-Stokes Problem. I. Regularity of Solutions and Second-Order Error Estimates for Spatial Discretization, SIAM J. Numer. Anal., 19 (1982), 275-311.
    • (1982) SIAM J. Numer. Anal. , vol.19 , pp. 275-311
    • Heywood, J.G.1    Rannacher, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.