메뉴 건너뛰기




Volumn 72, Issue 7, 2004, Pages 943-960

Relativistic velocity space, wigner rotation, and Thomas precession

Author keywords

[No Author keywords available]

Indexed keywords


EID: 3042817446     PISSN: 00029505     EISSN: None     Source Type: Journal    
DOI: 10.1119/1.1652040     Document Type: Article
Times cited : (84)

References (51)
  • 1
    • 0000695454 scopus 로고
    • Motion of the spinning electron
    • L. H. Thomas, "Motion of the spinning electron," Nature (London) 117, 514 (1926); "The Kinematics of an electron with an axis," Philos. Mag. 3, 1-23 (1927).
    • (1926) Nature (London) , vol.117 , pp. 514
    • Thomas, L.H.1
  • 2
    • 0000695454 scopus 로고
    • The Kinematics of an electron with an axis
    • L. H. Thomas, "Motion of the spinning electron," Nature (London) 117, 514 (1926); "The Kinematics of an electron with an axis," Philos. Mag. 3, 1-23 (1927).
    • (1927) Philos. Mag. , vol.3 , pp. 1-23
  • 3
    • 0001420838 scopus 로고
    • On unitary representations of the inhomogeneous Lorentz group
    • E. P. Wigner, "On unitary representations of the inhomogeneous Lorentz group," Ann. Math. 40, 149-204 (1939).
    • (1939) Ann. Math. , vol.40 , pp. 149-204
    • Wigner, E.P.1
  • 4
    • 0040978891 scopus 로고
    • The Thomas precession
    • G. P. Fisher, "The Thomas precession," Am. J. Phys. 40, 1772-1781 (1972). This article derives the Thomas-Wigner rotation and Thomas precession in several different ways and gives an excellent summary of previous treatments.
    • (1972) Am. J. Phys. , vol.40 , pp. 1772-1781
    • Fisher, G.P.1
  • 5
    • 0004179874 scopus 로고    scopus 로고
    • Wiley, New York, 3rd ed.
    • J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1998), 3rd ed., pp. 548-553, 563-564, 571.
    • (1998) Classical Electrodynamics , pp. 548-553
    • Jackson, J.D.1
  • 9
    • 0011219550 scopus 로고
    • Thomas precession: Where is the torque?
    • Some authors derive an approximation that is valid to second order in β, which is all that is needed to calculate the relativistic correction to the spin-orbit term in hydrogen. See, for example, R. A. Muller, "Thomas precession: Where is the torque?," Am. J. Phys. 60, 313-317 (1992) and H. Kroemer, "The Thomas precession factor in spin-orbit interaction," ibid. 72, 51-52 (2004).
    • (1992) Am. J. Phys. , vol.60 , pp. 313-317
    • Muller, R.A.1
  • 10
    • 0942278792 scopus 로고    scopus 로고
    • The Thomas precession factor in spin-orbit interaction
    • Some authors derive an approximation that is valid to second order in β, which is all that is needed to calculate the relativistic correction to the spin-orbit term in hydrogen. See, for example, R. A. Muller, "Thomas precession: Where is the torque?," Am. J. Phys. 60, 313-317 (1992) and H. Kroemer, "The Thomas precession factor in spin-orbit interaction," ibid. 72, 51-52 (2004).
    • (2004) Am. J. Phys. , vol.72 , pp. 51-52
    • Kroemer, H.1
  • 11
    • 0004272024 scopus 로고    scopus 로고
    • Wiley, New York, 2nd ed.
    • S. Gasiorowicz, Quantum Physics (Wiley, New York, 1996), 2nd ed., p. 282.
    • (1996) Quantum Physics , pp. 282
    • Gasiorowicz, S.1
  • 15
    • 23044528513 scopus 로고    scopus 로고
    • The Thomas rotation
    • One exception, which gives an elementary and clear example of the Thomas-Wigner rotation, is the recent paper by J. P. Costella, B. H. J. McKellar, and A. A. Rawlinson, "The Thomas rotation," Am. J. Phys. 69, 837-847 (2001).
    • (2001) Am. J. Phys. , vol.69 , pp. 837-847
    • Costella, J.P.1    McKellar, B.H.J.2    Rawlinson, A.A.3
  • 16
    • 0001321336 scopus 로고
    • Thomas precession and its associated grouplike structure
    • A. A. Ungar, "Thomas precession and its associated grouplike structure," Am. J. Phys. 59, 824-834 (1991).
    • (1991) Am. J. Phys. , vol.59 , pp. 824-834
    • Ungar, A.A.1
  • 18
    • 84955032087 scopus 로고
    • Wigner's rotation revisited
    • A. Ben-Menahem, "Wigner's rotation revisited," Am. J. Phys. 53, 62-66 (1985).
    • (1985) Am. J. Phys. , vol.53 , pp. 62-66
    • Ben-Menahem, A.1
  • 19
    • 0001450842 scopus 로고
    • Physical holonomy, Thomas precession, and Clifford algebra
    • H. Urbantke, "Physical holonomy, Thomas precession, and Clifford algebra," Am. J. Phys. 58, 747-750 (1990).
    • (1990) Am. J. Phys. , vol.58 , pp. 747-750
    • Urbantke, H.1
  • 20
    • 0039403736 scopus 로고
    • Geometry of the Thomas precession
    • G. H. Goedecke, "Geometry of the Thomas precession," Am. J. Phys. 46, 1055-1056 (1978).
    • (1978) Am. J. Phys. , vol.46 , pp. 1055-1056
    • Goedecke, G.H.1
  • 21
    • 0030493670 scopus 로고    scopus 로고
    • Relativistic precession
    • J. D. Hamilton, "Relativistic precession," Am. J. Phys. 64, 1197-11201 (1996).
    • (1996) Am. J. Phys. , vol.64 , pp. 1197-11201
    • Hamilton, J.D.1
  • 22
    • 0030521428 scopus 로고    scopus 로고
    • Rest frames for a point particle in special relativity
    • E. G. P. Rowe, "Rest frames for a point particle in special relativity," Am. J. Phys. 64, 1184-1196 (1996).
    • (1996) Am. J. Phys. , vol.64 , pp. 1184-1196
    • Rowe, E.G.P.1
  • 26
    • 21744441853 scopus 로고    scopus 로고
    • The Wigner angle as an anholonomy in rapidity space
    • P. K. Aravind, "The Wigner angle as an anholonomy in rapidity space," Am. J. Phys. 65, 634-636 (1997).
    • (1997) Am. J. Phys. , vol.65 , pp. 634-636
    • Aravind, P.K.1
  • 27
    • 23044523433 scopus 로고    scopus 로고
    • A link between the bounds on relativistic velocities and areas of hyperbolic triangles
    • C. Criado and N. Alamo, "A link between the bounds on relativistic velocities and areas of hyperbolic triangles," Am. J. Phys. 69, 306-310 (2000).
    • (2000) Am. J. Phys. , vol.69 , pp. 306-310
    • Criado, C.1    Alamo, N.2
  • 29
    • 33646638878 scopus 로고    scopus 로고
    • note
    • In Sec. VIIIC we discuss the more general case of the three-dimensional relativistic velocity space obtained from four-dimensional space-time.
  • 30
    • 33646639231 scopus 로고    scopus 로고
    • Reference 26, pp. 52-53
    • Reference 26, pp. 52-53.
  • 31
    • 33646636916 scopus 로고    scopus 로고
    • note
    • We thank one of the referees for pointing this out to us.
  • 32
    • 0039684772 scopus 로고
    • Special relativity and diagonal transformations
    • L. Parker and G. M. Schmieg, "Special relativity and diagonal transformations," Am. J. Phys. 38, 218-222 (1970).
    • (1970) Am. J. Phys. , vol.38 , pp. 218-222
    • Parker, L.1    Schmieg, G.M.2
  • 33
    • 33646651804 scopus 로고    scopus 로고
    • note
    • In this case, by "conformal," we mean that angle measurements using a natural metric induced from Minkowski space (in a manner similar to the one developed in this section) coincide with those using the metric arising from viewing the surface as embedded in Euclidean 3-space.
  • 34
    • 33646652926 scopus 로고    scopus 로고
    • note
    • 2, by "conformal" we mean that angle measurements coincide with those using the Euclidean metric in 2-space.
  • 35
    • 33646648822 scopus 로고    scopus 로고
    • note
    • There are other choices of A, B, and C that will solve the three equations. First, if A = C=0, then B=±1 and g=±r. These solutions, however, make the denominator on the right-hand side of Eq. (44) vanish. Second, if B = 0, then A can be arbitrary as long as C= 1/(4A). In this case, however, if we use any value of A other than A = 1/2, we end up with the same model of a disk, but one whose radius is not equal to one. In this case everything is the same, just scaled appropriately.
  • 36
    • 33646642795 scopus 로고    scopus 로고
    • note
    • Although the coordinates in a two- or three-dimensional velocity space are the components of the velocity, the coordinates in rapidity space are not components of the rapidity; rather, they are proportional to the coordinates of the velocity, with a proportionality factor that varies from point to point. The space is called rapidity space simply to emphasize that the distance from the origin to any point in it is the rapidity of that point.
  • 37
    • 33646642245 scopus 로고    scopus 로고
    • note
    • This calculation implicitly assumes that the distance s is to be evaluated along a straight line. By definition, the distance between two points is the minimum of all the path integrals connecting them, which means that distances are evaluated along geodesics (unless otherwise stated). Thus, we are assuming that any geodesic that includes the origin is a straight line. We prove this assumption in Sec. VI.
  • 38
    • 33646661845 scopus 로고    scopus 로고
    • See, for example, Ref. 16, pp. 62-63. We give an algebraic proof of this result in Sec. VIIID
    • See, for example, Ref. 16, pp. 62-63. We give an algebraic proof of this result in Sec. VIIID.
  • 40
    • 33646649565 scopus 로고    scopus 로고
    • note
    • This fact is easily proved by noting that any four-sided Euclidean figure can be constructed from two triangles.
  • 41
    • 33646655169 scopus 로고    scopus 로고
    • See, for example, Ref. 4, p. 552
    • See, for example, Ref. 4, p. 552.
  • 42
    • 33646651613 scopus 로고    scopus 로고
    • One exception is given in Ref. 41 in which the result is derived in the lab frame
    • One exception is given in Ref. 41 in which the result is derived in the lab frame.
  • 43
    • 0035609082 scopus 로고    scopus 로고
    • Spin-orbit interaction and the Thomas precession: A Comment on the Lab Point of View
    • G. Muñoz, "Spin-orbit interaction and the Thomas precession: A Comment on the Lab Point of View," Am. J. Phys. 69, 554-556 (2001).
    • (2001) Am. J. Phys. , vol.69 , pp. 554-556
    • Muñoz, G.1
  • 46
    • 33646666178 scopus 로고    scopus 로고
    • note
    • There are actually two such matrices associated with any Möbius transformation, because the matrices A and -A correspond to the same transformation.
  • 48
    • 33646659696 scopus 로고    scopus 로고
    • note
    • This is the exercise from Ref. 21 discussed in Sec. I.
  • 49
    • 33646645506 scopus 로고    scopus 로고
    • note
    • Note that because of the non-commutativity of quaternions, the formula for this Möbius transformation must be expressed with the "denominator" on the right.
  • 50
    • 0003783190 scopus 로고
    • Springer-Verlag, New York
    • For a more algebraic approach to the spinor map, see G. L. Naber, The Geometry of Minkowski Spacetime (Springer-Verlag, New York, 1992), or M. Carmeli and S. Malin, An Introduction to the Theory of Spinors (World Scientific, Singapore, 2000).
    • (1992) The Geometry of Minkowski Spacetime
    • Naber, G.L.1
  • 51
    • 3042700567 scopus 로고    scopus 로고
    • World Scientific, Singapore
    • For a more algebraic approach to the spinor map, see G. L. Naber, The Geometry of Minkowski Spacetime (Springer-Verlag, New York, 1992), or M. Carmeli and S. Malin, An Introduction to the Theory of Spinors (World Scientific, Singapore, 2000).
    • (2000) An Introduction to the Theory of Spinors
    • Carmeli, M.1    Malin, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.