메뉴 건너뛰기




Volumn 23, Issue 3, 2004, Pages 221-235

Robust object recognition in images and the related database problems

Author keywords

Databases; Fine grain image recognition; High dimensional indexing; Image retrieval systems

Indexed keywords

APPROXIMATION THEORY; DATABASE SYSTEMS; IMAGE CODING; IMAGE RETRIEVAL; INDEXING (OF INFORMATION); PROBLEM SOLVING; QUERY LANGUAGES; ROBUSTNESS (CONTROL SYSTEMS);

EID: 3042712122     PISSN: 13807501     EISSN: None     Source Type: Journal    
DOI: 10.1023/B:MTAP.0000031758.46389.00     Document Type: Article
Times cited : (14)

References (21)
  • 1
    • 0035591459 scopus 로고    scopus 로고
    • Content-based retrieval using local descriptors: Problems and issues from a database perspective
    • L. Amsaleg and P. Gros, "Content-based retrieval using local descriptors: Problems and issues from a database perspective," Pattern Analysis and Applications, Vol. 4, Nos. 2/3, pp. 108-124, 2001.
    • (2001) Pattern Analysis and Applications , vol.4 , Issue.2-3 , pp. 108-124
    • Amsaleg, L.1    Gros, P.2
  • 5
    • 3042740825 scopus 로고    scopus 로고
    • Approximate k-nearest-neighbor searches: A new algorithm with probabilistic control of the precision
    • IRISA
    • S.-A. Berrani, L. Amsaleg, and P. Gros, "Approximate k-nearest-neighbor searches: A new algorithm with probabilistic control of the precision," Technical Report PI 1495, IRISA, 2002.
    • (2002) Technical Report , vol.PI 1495
    • Berrani, S.-A.1    Amsaleg, L.2    Gros, P.3
  • 6
    • 0038670812 scopus 로고    scopus 로고
    • Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases
    • C. Böhm, S. Berchtold, and D. Keim, "Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases," ACM Computing Surveys, Vol. 33, No. 3, 2001.
    • (2001) ACM Computing Surveys , vol.33 , Issue.3
    • Böhm, C.1    Berchtold, S.2    Keim, D.3
  • 7
    • 0033906160 scopus 로고    scopus 로고
    • Pac nearest neighbor queries: Approximate and controlled search in high-dimensional and metric spaces
    • San Diego, California, USA
    • P. Ciaccia and M. Patella, "Pac nearest neighbor queries: Approximate and controlled search in high-dimensional and metric spaces," in Proc. of the Int. Conf. on Data Engineering (ICDE), San Diego, California, USA, 2000, pp. 244-255.
    • (2000) Proc. of the Int. Conf. on Data Engineering (ICDE) , pp. 244-255
    • Ciaccia, P.1    Patella, M.2
  • 11
    • 0021615874 scopus 로고
    • R-trees: A dynamic index structure for spatial searching
    • Boston, Massachusetts, USA
    • A. Guttman, "R-trees: A dynamic index structure for spatial searching," in Proc. of the ACM SIGMOD Int. Conf. on Management of Data, Boston, Massachusetts, USA, 1984, pp. 47-57.
    • (1984) Proc. of the ACM SIGMOD Int. Conf. on Management of Data , pp. 47-57
    • Guttman, A.1
  • 13
    • 0031702884 scopus 로고    scopus 로고
    • h-tree: An access structure for feature vectors
    • Orlando, Florida, USA
    • h-tree: An access structure for feature vectors," in Proc. of the Int. Conf. on Data Engineering (ICDE), Orlando, Florida, USA, 1998, pp. 362-369.
    • (1998) Proc. of the Int. Conf. on Data Engineering (ICDE) , pp. 362-369
    • Henrich, A.1
  • 14
    • 0000835955 scopus 로고    scopus 로고
    • Optimal grid-clustering: Towards breaking the curse of dimensionality in high-dimensional clustering
    • Edinburgh, Scotland, UK
    • A. Hinneburg and D. Keim, "Optimal grid-clustering: Towards breaking the curse of dimensionality in high-dimensional clustering," in Proc. of Int. Conf. on Very Large Databases (VLDB), Edinburgh, Scotland, UK, 1999, pp. 506-517.
    • (1999) Proc. of Int. Conf. on Very Large Databases (VLDB) , pp. 506-517
    • Hinneburg, A.1    Keim, D.2
  • 21
    • 0000681228 scopus 로고    scopus 로고
    • A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces
    • New York City, New York, USA
    • R. Weber, H. Schek, and S. Blott, "A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces," in Proc. of Int. Conf. on Very Large Databases (VLDB), New York City, New York, USA, 1998, pp. 194-205.
    • (1998) Proc. of Int. Conf. on Very Large Databases (VLDB) , pp. 194-205
    • Weber, R.1    Schek, H.2    Blott, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.