-
4
-
-
0001914191
-
The method of steepest descent for nonlinear minimization problems
-
H. B. Curry, The method of steepest descent for nonlinear minimization problems, Quart. Appl. Math., Vol. 2 (1944), 258-261.
-
(1944)
Quart. Appl. Math.
, vol.2
, pp. 258-261
-
-
Curry, H.B.1
-
5
-
-
0000815948
-
Generic flows generated by continuous vector fields in Banach spaces
-
F. S. De Blasi and J. Myjak, Generic flows generated by continuous vector fields in Banach spaces, Adv. Math., Vol. 50 (1983), 266-280.
-
(1983)
Adv. Math.
, vol.50
, pp. 266-280
-
-
De Blasi, F.S.1
Myjak, J.2
-
6
-
-
0001815910
-
Sur la porosité des contractions sans point fixe
-
F. S. De Blasi and J. Myjak, Sur la porosité des contractions sans point fixe, C. R. Acad. Sci. Paris, Vol. 308 (1989), 51-54.
-
(1989)
C. R. Acad. Sci. Paris
, vol.308
, pp. 51-54
-
-
De Blasi, F.S.1
Myjak, J.2
-
7
-
-
0000770073
-
Porous sets in best approximation theory
-
F. S. De Blasi, J. Myjak and P. L. Papini, Porous sets in best approximation theory, J. London Math. Soc., Vol. 44(1991), 135-142.
-
(1991)
J. London Math. Soc.
, vol.44
, pp. 135-142
-
-
De Blasi, F.S.1
Myjak, J.2
Papini, P.L.3
-
8
-
-
0016092731
-
On the variational principle
-
I. Ekeland, On the variational principle, J. Math. Anal. Appl., Vol. 47 (1974), 324-353.
-
(1974)
J. Math. Anal. Appl.
, vol.47
, pp. 324-353
-
-
Ekeland, I.1
-
10
-
-
0033879285
-
Variational principles and well-posedness in optimization and calculus of variations
-
A. D. Ioffe and A. J. Zaslavski, Variational principles and well-posedness in optimization and calculus of variations, SIAM J. Control Optim., Vol. 38 (2000), 566-581.
-
(2000)
SIAM J. Control Optim.
, vol.38
, pp. 566-581
-
-
Ioffe, A.D.1
Zaslavski, A.J.2
-
11
-
-
0003413877
-
Sobolev Gradients and differential Equations
-
Springer, Berlin
-
J.W. Neuberger, Sobolev Gradients and Differential Equations, Lecture Notes in Math. No. 1670, Springer, Berlin, 1997.
-
(1997)
Lecture Notes in Math. No. 1670
-
-
Neuberger, J.W.1
-
12
-
-
0034187468
-
Generic convergence of descent methods in Banach spaces
-
S. Reich and A. J. Zaslavski, Generic convergence of descent methods in Banach spaces, Math. Oper. Research, Vol. 25 (2000), 231-242.
-
(2000)
Math. Oper. Research
, vol.25
, pp. 231-242
-
-
Reich, S.1
Zaslavski, A.J.2
-
13
-
-
0035603910
-
The set of divergent descent methods in a Banach space is σ-porous
-
S. Reich and A. J. Zaslavski, The set of divergent descent methods in a Banach space is σ-porous, SIAM J. Optim. Vol. 11 (2001), 1003-1018.
-
(2001)
SIAM J. Optim.
, vol.11
, pp. 1003-1018
-
-
Reich, S.1
Zaslavski, A.J.2
-
14
-
-
0035420527
-
Porosity of the set of divergent descent methods
-
S. Reich and A. J. Zaslavski, Porosity of the set of divergent descent methods, Nonlinear Anal., Vol. 47 (2001), 3247-3258.
-
(2001)
Nonlinear Anal.
, vol.47
, pp. 3247-3258
-
-
Reich, S.1
Zaslavski, A.J.2
-
15
-
-
3042670437
-
Two convergence results for continuous descent methods
-
S. Reich and A. J. Zaslavski, Two convergence results for continuous descent methods, Electron. J. Differential Equations, Vol. 2003 (2003), No. 24, 1-11.
-
(2003)
Electron. J. differential Equations
, vol.2003
, Issue.24
, pp. 1-11
-
-
Reich, S.1
Zaslavski, A.J.2
-
16
-
-
0001033236
-
Porosity and σ-porosity
-
L. Zajíĉek Porosity and σ-porosity, Real Anal. Exchange, Vol. 13 (1987), 314-350.
-
(1987)
Real Anal. Exchange
, vol.13
, pp. 314-350
-
-
Zajíĉek, L.1
-
17
-
-
0000095357
-
Small non-σ-porous sets in topologically complete metric spaces
-
L. Zajíĉek Small non-σ-porous sets in topologically complete metric spaces, Colloq. Math., Vol. 77 (1998), 293-304.
-
(1998)
Colloq. Math.
, vol.77
, pp. 293-304
-
-
Zajíĉek, L.1
-
18
-
-
0000174455
-
Well-posedness and porosity in optimal control without convexity assumptions
-
A. J. Zaslavski, Well-posedness and porosity in optimal control without convexity assumptions, Calc. Var., Vol. 13 (2001), 265-293.
-
(2001)
Calc. Var.
, vol.13
, pp. 265-293
-
-
Zaslavski, A.J.1
|