-
1
-
-
0001139899
-
A general theorem on square-integrability: Vector coherent states
-
Ali S T 1998 A general theorem on square-integrability: vector coherent states J. Math. Phys. 39 3954-64
-
(1998)
J. Math. Phys.
, vol.39
, pp. 3954-3964
-
-
Ali, S.T.1
-
3
-
-
1642436849
-
Plancherel inversion as unified approach to wavelet transforms and Wigner functions
-
Ali S T, Führ H and Krasowska A E 2003 Plancherel inversion as unified approach to wavelet transforms and Wigner functions Ann. H Poincaré 4 1015-50
-
(2003)
Ann. H Poincaré
, vol.4
, pp. 1015-1050
-
-
Ali, S.T.1
Führ, H.2
Krasowska, A.E.3
-
4
-
-
21844522407
-
Quantization of a classical system on a coadjoint orbit the Poincaré group in 1 + 1 dimensions
-
Ali S T and Mueller U A 1994 Quantization of a classical system on a coadjoint orbit the Poincaré group in 1 + 1 dimensions J. Math. Phys. 35 4405-22
-
(1994)
J. Math. Phys.
, vol.35
, pp. 4405-4422
-
-
Ali, S.T.1
Mueller, U.A.2
-
5
-
-
0028482153
-
Annihilation operators and coherent states for the Jaynes-Cummings model
-
Bérubé-Lauzière Y, Hussin V and Nieto L M 1994 Annihilation operators and coherent states for the Jaynes-Cummings model Phys. Rev. A 50 1725-31
-
(1994)
Phys. Rev. A
, vol.50
, pp. 1725-1731
-
-
Bérubé-Lauzière, Y.1
Hussin, V.2
Nieto, L.M.3
-
6
-
-
0010942496
-
Orthogonal polynomials and generalized oscillator algebras
-
Borzov V V 2001 Orthogonal polynomials and generalized oscillator algebras Integral Transforms Spec. Funct. 12 115-38
-
(2001)
Integral Transforms Spec. Funct.
, vol.12
, pp. 115-138
-
-
Borzov, V.V.1
-
8
-
-
0000008593
-
Homogeneous vector bundles
-
Bott R 1957 Homogeneous vector bundles Ann. Math. 66 203-48
-
(1957)
Ann. Math.
, vol.66
, pp. 203-248
-
-
Bott, R.1
-
9
-
-
0005645501
-
Analytic expressions for the matrix elements of generators of Sp(6) in an Sp(6) ⊃ U(3) basis
-
Castaños O, Chacon E and Moshinsky M 1984 Analytic expressions for the matrix elements of generators of Sp(6) in an Sp(6) ⊃ U(3) basis J. Math. Phys. 25 1211-8
-
(1984)
J. Math. Phys.
, vol.25
, pp. 1211-1218
-
-
Castaños, O.1
Chacon, E.2
Moshinsky, M.3
-
10
-
-
0037200133
-
General sets of coherent states and the Jaynes-Cummings model
-
Daoud M and Hussin V 2002 General sets of coherent states and the Jaynes-Cummings model J. Phys. A: Math. Gen. 35 7381-402
-
(2002)
J. Phys. A: Math. Gen.
, vol.35
, pp. 7381-7402
-
-
Daoud, M.1
Hussin, V.2
-
11
-
-
0000044476
-
Partially coherent states of the real symplectic group
-
Deenen J and Quesne C 1984 Partially coherent states of the real symplectic group J. Math. Phys. 25 2354-66
-
(1984)
J. Math. Phys.
, vol.25
, pp. 2354-2366
-
-
Deenen, J.1
Quesne, C.2
-
12
-
-
0038995424
-
Dynamical group of microscopic collective states: III. Coherent state representations in d dimensions
-
Deenen J and Quesne C 1984 Dynamical group of microscopic collective states: III. Coherent state representations in d dimensions J. Math. Phys. 25 1638-850
-
(1984)
J. Math. Phys.
, vol.25
, pp. 1638-1850
-
-
Deenen, J.1
Quesne, C.2
-
13
-
-
0000653944
-
On the regular representation of a nonunimodular locally compact group
-
Duflo M and Moore C C 1976 On the regular representation of a nonunimodular locally compact group J. Funct. Anal. 21 209-43
-
(1976)
J. Funct. Anal.
, vol.21
, pp. 209-243
-
-
Duflo, M.1
Moore, C.C.2
-
14
-
-
0002627425
-
Canonical realizations of classical Lie algebras
-
Exner P, Havliček M and Lassner W 1976 Canonical realizations of classical Lie algebras Czech. J. Phys. B 26 1213-28
-
(1976)
Czech. J. Phys. B
, vol.26
, pp. 1213-1228
-
-
Exner, P.1
Havliček, M.2
Lassner, W.3
-
16
-
-
0036788764
-
Admissible vectors for the regular representation
-
Führ H 2002 Admissible vectors for the regular representation Proc Am. Math. Soc. 130 2959-70
-
(2002)
Proc Am. Math. Soc.
, vol.130
, pp. 2959-2970
-
-
Führ, H.1
-
17
-
-
3042602516
-
Examples of Berezin-Toeplitz quantization: Finite sets and unit interval
-
ed P Winternitz, J Harnad, C S Lam and J Patera
-
Gazeau J P, Garidi T, Huguet E, Lachièze Rey M and Renaud J 2004 Examples of Berezin-Toeplitz quantization: finite sets and unit interval Proc. Conf. 'Symmetry in Physics. In memory of Robert T Sharp' (CRM Proceedings and Lecture Notes, Montréal) ed P Winternitz, J Harnad, C S Lam and J Patera
-
(2004)
Proc. Conf. 'Symmetry in Physics. In Memory of Robert T Sharp' (CRM Proceedings and Lecture Notes, Montréal)
-
-
Gazeau, J.P.1
Garidi, T.2
Huguet, E.3
Lachièze Rey, M.4
Renaud, J.5
-
18
-
-
0033534254
-
Coherent states for systems with discrete and continuous spectrum
-
Gazeau J-P and Klauder J R 1999 Coherent states for systems with discrete and continuous spectrum J. Phys. A: Math. Gen. A 32 123-32
-
(1999)
J. Phys. A: Math. Gen. A
, vol.32
, pp. 123-132
-
-
Gazeau, J.-P.1
Klauder, J.R.2
-
23
-
-
0043077862
-
Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems
-
Klauder J R, Penson K A and Sixdeniers J-M 2001 Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems Phys. Rev. A 64 013817
-
(2001)
Phys. Rev. A
, vol.64
, pp. 013817
-
-
Klauder, J.R.1
Penson, K.A.2
Sixdeniers, J.-M.3
-
26
-
-
21144483665
-
Coherent states and geometric quantization
-
Odzijewicz A 1992 Coherent states and geometric quantization Commun. Math. Phys. 150 385-413
-
(1992)
Commun. Math. Phys.
, vol.150
, pp. 385-413
-
-
Odzijewicz, A.1
-
27
-
-
0032023961
-
Quantum algebras and q-special functions related to coherent states maps of the disc
-
Odzijewicz A 1998 Quantum algebras and q-special functions related to coherent states maps of the disc Commun. Math. Phys. 192 183-215
-
(1998)
Commun. Math. Phys.
, vol.192
, pp. 183-215
-
-
Odzijewicz, A.1
-
30
-
-
36849043157
-
Generalized vector coherent states of sp(2N, ℝ) vector operators and of sp(2N, ℝ) ⊃ u(N) reduced Wigner coefficients
-
Quesne C 1991 Generalized vector coherent states of sp(2N, ℝ) vector operators and of sp(2N, ℝ) ⊃ u(N) reduced Wigner coefficients J. Phys. A: Math. Gen. 24 2697-714
-
(1991)
J. Phys. A: Math. Gen.
, vol.24
, pp. 2697-2714
-
-
Quesne, C.1
-
31
-
-
0033896626
-
New nonlinear coherent states and some of their nonclassical properties
-
Roy B and Roy P 2000 New nonlinear coherent states and some of their nonclassical properties J. Opt. B: Quantum Semiclass. Opt. 2 65-8
-
(2000)
J. Opt. B: Quantum Semiclass. Opt.
, vol.2
, pp. 65-68
-
-
Roy, B.1
Roy, P.2
-
32
-
-
68649084360
-
Some recent advances in coherent state theory and its applications to nuclear collective motion
-
ed M de Toro, W Nörenberg, M Rosina and S Stringari (Singapore: World Scientific)
-
Rowe D J 1986 Some recent advances in coherent state theory and its applications to nuclear collective motion Phase Space Approach to Nuclear Dynamics ed M de Toro, W Nörenberg, M Rosina and S Stringari (Singapore: World Scientific) pp 573-93
-
(1986)
Phase Space Approach to Nuclear Dynamics
, pp. 573-593
-
-
Rowe, D.J.1
-
33
-
-
11744346072
-
Coherent state theory of the noncompact symplectic group
-
Rowe D J 1984 Coherent state theory of the noncompact symplectic group J. Math. Phys. 25 2662-71
-
(1984)
J. Math. Phys.
, vol.25
, pp. 2662-2671
-
-
Rowe, D.J.1
-
34
-
-
0001252953
-
Vector coherent-state theory as a theory of induced representations
-
Rowe D J and Repka J 1991 Vector coherent-state theory as a theory of induced representations J. Math. Phys. 32 2614-34
-
(1991)
J. Math. Phys.
, vol.32
, pp. 2614-2634
-
-
Rowe, D.J.1
Repka, J.2
-
36
-
-
0002672593
-
The classical moment problem as a self-adjoint finite difference operator
-
Simon B 1998 The classical moment problem as a self-adjoint finite difference operator Adv. Math. 137 82-203
-
(1998)
Adv. Math.
, vol.137
, pp. 82-203
-
-
Simon, B.1
-
37
-
-
0001531644
-
Plancherel formula for non-unimodular locally compact groups
-
Tatsuma N 1972 Plancherel formula for non-unimodular locally compact groups J. Math. Kyoto Univ. 12 179-281
-
(1972)
J. Math. Kyoto Univ.
, vol.12
, pp. 179-281
-
-
Tatsuma, N.1
-
38
-
-
0242550793
-
A class of vector coherent states defined over matrix domains
-
Thirulogasanthar K and Ali S T 2003 A class of vector coherent states defined over matrix domains J. Math. Phys. 44 5070-83
-
(2003)
J. Math. Phys.
, vol.44
, pp. 5070-5083
-
-
Thirulogasanthar, K.1
Ali, S.T.2
|