-
1
-
-
0036340677
-
Subexponential solutions of linear Volterra integro-differential equations and transient renewal equations
-
J. A. D. Appleby and D. W. Reynolds. Subexponential solutions of linear Volterra integro-differential equations and transient renewal equations. Proc. Roy. Soc. Edinburgh. Sect. A, 132:521-543, 2002.
-
(2002)
Proc. Roy. Soc. Edinburgh. Sect. A
, vol.132
, pp. 521-543
-
-
Appleby, J.A.D.1
Reynolds, D.W.2
-
3
-
-
84971141984
-
On multi-dimensional annealing problems
-
T. Chan. On multi-dimensional annealing problems. Math. Proc. Cambridge Philos. Soc., 105(1):177-184, 1989.
-
(1989)
Math. Proc. Cambridge Philos. Soc.
, vol.105
, Issue.1
, pp. 177-184
-
-
Chan, T.1
-
4
-
-
84971113748
-
An “excursion” approach to an annealing problem
-
T. Chan and D. Williams. An “excursion” approach to an annealing problem. Math. Proc. Cambridge Philos. Soc., 105(1):169-176, 1989.
-
(1989)
Math. Proc. Cambridge Philos. Soc.
, vol.105
, Issue.1
, pp. 169-176
-
-
Chan, T.1
Williams, D.2
-
5
-
-
29244442980
-
Existence and stability of solutions of a delay differential system
-
R. D. Driver. Existence and stability of solutions of a delay differential system. Arch. Rational Mech. Anal., 10:401-426, 1962.
-
(1962)
Arch. Rational Mech. Anal.
, vol.10
, pp. 401-426
-
-
Driver, R.D.1
-
7
-
-
0001840597
-
Langevin’s stochastic differential equation extended by a time-delay term
-
U. Kuchler and S. Mensch. Langevin’s stochastic differential equation extended by a time-delay term. Stochastics Stochastics Rep., 40(1-2):23-42, 1992.
-
(1992)
Stochastics Stochastics Rep.
, vol.40
, Issue.1-2
, pp. 23-42
-
-
Kuchler, U.1
Mensch, S.2
-
8
-
-
0035582005
-
Almost sure exponential stability of delay equations with damped stochastic perturbation
-
X. Mao. Almost sure exponential stability of delay equations with damped stochastic perturbation. Stochastic Analysis and Applications, 19(1):67-84, 2001.
-
(2001)
Stochastic Analysis and Applications
, vol.19
, Issue.1
, pp. 67-84
-
-
Mao, X.1
-
9
-
-
3042588254
-
Almost sure exponential stability of neutral differential difference equations with damped stochastic perturbations
-
X. Mao and X. Liao. Almost sure exponential stability of neutral differential difference equations with damped stochastic perturbations. Electronic Journal of Probability, 1:1-16, 1996.
-
(1996)
Electronic Journal of Probability
, vol.1
, pp. 1-16
-
-
Mao, X.1
Liao, X.2
-
10
-
-
0039065898
-
Asymptotic stability properties of linear Volterra integrodifferential equations
-
R. K. Miller. Asymptotic stability properties of linear Volterra integrodifferential equations. Journal of Differential Equations, 10:485-506, 1971.
-
(1971)
Journal of Differential Equations
, vol.10
, pp. 485-506
-
-
Miller, R.K.1
-
12
-
-
0001400501
-
Lyapunov exponents and stationary solutions for affine stochastic delay differential delay equations
-
S.-E. A. Mohammed and M. K. R. Scheutzow. Lyapunov exponents and stationary solutions for affine stochastic delay differential delay equations. Stochastics and Stochastics Reports, 29:259-283, 1990.
-
(1990)
Stochastics and Stochastics Reports
, vol.29
, pp. 259-283
-
-
Mohammed, S.-E.A.1
Scheutzow, M.K.R.2
-
13
-
-
3042526904
-
Exponential stability for fundamental solutions of some linear functional differential equations
-
T. Yoshizawa and J. Kato, editors, Singapore, World Scientific
-
S. Murakami. Exponential stability for fundamental solutions of some linear functional differential equations. In T. Yoshizawa and J. Kato, editors, Proceedings of the international symposium: Functional differential equations, pages 259-263, Singapore, 1990. World Scientific.
-
(1990)
Proceedings of the International Symposium: Functional Differential Equations
, pp. 259-263
-
-
Murakami, S.1
-
14
-
-
84972530258
-
Exponential asymptotic stability of scalar linear Volterra equations
-
S. Murakami. Exponential asymptotic stability of scalar linear Volterra equations. Differential Integral Equations, 4(3):519-525, 1991.
-
(1991)
Differential Integral Equations
, vol.4
, Issue.3
, pp. 519-525
-
-
Murakami, S.1
|