-
1
-
-
0043124612
-
Rates of growth and sample moduli for weighted empirical processes
-
ALEXANDER, K. S. (1987). Rates of growth and sample moduli for weighted empirical processes. Probab. Theory Related Fields 75 379-423.
-
(1987)
Probab. Theory Related Fields
, vol.75
, pp. 379-423
-
-
Alexander, K.S.1
-
2
-
-
0942268012
-
The large deviation principle of stochastic processes. I
-
ARCONES, M. (2003). The large deviation principle of stochastic processes. I. Theory Probab. Appl. 47 567-583.
-
(2003)
Theory Probab. Appl.
, vol.47
, pp. 567-583
-
-
Arcones, M.1
-
3
-
-
2142659244
-
The large deviation principle of stochastic processes. II
-
ARCONES, M. (2004). The large deviation principle of stochastic processes. II. Theory Probab. Appl. 48 19-44.
-
(2004)
Theory Probab. Appl.
, vol.48
, pp. 19-44
-
-
Arcones, M.1
-
5
-
-
0011282807
-
Uniform limit laws for kernel density estimators on possibly unbounded intervals
-
(N. Limnios and M. Nikulin, eds.). Birkhäuser, Basel
-
DEHEUVELS, P. (2000). Uniform limit laws for kernel density estimators on possibly unbounded intervals. In Recent Advances in Reliability Theory: Methodology, Practice and Inference (N. Limnios and M. Nikulin, eds.) 477-492. Birkhäuser, Basel.
-
(2000)
Recent Advances in Reliability Theory: Methodology, Practice and Inference
, pp. 477-492
-
-
Deheuvels, P.1
-
6
-
-
0000218321
-
Functional laws of the iterated logarithm for increments of empirical and quantile processes
-
DEHEUVELS, P. and MASON, D. M. (1992). Functional laws of the iterated logarithm for increments of empirical and quantile processes. Ann. Probab. 20 1248-1287.
-
(1992)
Ann. Probab.
, vol.20
, pp. 1248-1287
-
-
Deheuvels, P.1
Mason, D.M.2
-
7
-
-
0000218322
-
Functional laws of the iterated logarithm for local empirical processes indexed by sets
-
DEHEUVELS, P. and MASON, D. M. (1994). Functional laws of the iterated logarithm for local empirical processes indexed by sets. Ann. Probab. 22 1619-1661.
-
(1994)
Ann. Probab.
, vol.22
, pp. 1619-1661
-
-
Deheuvels, P.1
Mason, D.M.2
-
8
-
-
8744302145
-
General asymptotic confidence bounds based on kernel-type function estimators
-
To appear
-
DEHEUVELS, P. and MASON, D. M. (2004). General asymptotic confidence bounds based on kernel-type function estimators. Stat. Inference Stock. Process. To appear.
-
(2004)
Stat. Inference Stock. Process.
-
-
Deheuvels, P.1
Mason, D.M.2
-
11
-
-
0040745579
-
Gaussian approximation of local empirical processes indexed by functions
-
EINMAHL, U. and MASON, D. M. (1997). Gaussian approximation of local empirical processes indexed by functions. Probab. Theory Related Fields 107 283-311.
-
(1997)
Probab. Theory Related Fields
, vol.107
, pp. 283-311
-
-
Einmahl, U.1
Mason, D.M.2
-
12
-
-
0002168859
-
Strong approximations for local empirical processes
-
(E. Eberlein, M. Hahn and J. Kuelbs, eds.). Birkhäuser, Basel
-
EINMAHL, U. and MASON, D. M. (1998). Strong approximations for local empirical processes. In Proceedings of High Dimensional Probability (E. Eberlein, M. Hahn and J. Kuelbs, eds.) 75-92. Birkhäuser, Basel.
-
(1998)
Proceedings of High Dimensional Probability
, pp. 75-92
-
-
Einmahl, U.1
Mason, D.M.2
-
13
-
-
0034421301
-
An empirical process approach to the uniform consistency of kernel-type function estimators
-
EINMAHL, U. and MASON, D. M. (2000). An empirical process approach to the uniform consistency of kernel-type function estimators. J. Theoret. Probab. 13 1-37.
-
(2000)
J. Theoret. Probab.
, vol.13
, pp. 1-37
-
-
Einmahl, U.1
Mason, D.M.2
-
15
-
-
0042739507
-
On consistency of kernel density estimators for randomly censored data: Rates holding uniformly over adaptive intervals
-
GINÉ, E. and GUILLOU, A. (2001). On consistency of kernel density estimators for randomly censored data: Rates holding uniformly over adaptive intervals. Ann. Inst. H. Poincaré Probab. Statist. 37 503-522.
-
(2001)
Ann. Inst. H. Poincaré Probab. Statist.
, vol.37
, pp. 503-522
-
-
Giné, E.1
Guillou, A.2
-
16
-
-
0036847557
-
Rates of strong consistency for multivariate kernel density estimators
-
GINÉ, E. and GUILLOU, A. (2002). Rates of strong consistency for multivariate kernel density estimators. Ann. Inst. H. Poincaré Probab. Statist. 38 907-921.
-
(2002)
Ann. Inst. H. Poincaré Probab. Statist.
, vol.38
, pp. 907-921
-
-
Giné, E.1
Guillou, A.2
-
17
-
-
3042568544
-
Ratio limit theorems for empirical processes
-
Birkhäuser, Basel
-
GINÉ, E., KOLTCHINSKII, V. and J. WELLNER, J. A. (2003). Ratio limit theorems for empirical processes. In Stochastic Inequalities and Applications 249-278. Birkhäuser, Basel.
-
(2003)
Stochastic Inequalities and Applications
, pp. 249-278
-
-
Giné, E.1
Koltchinskii, V.J.2
Wellner, J.A.3
-
19
-
-
0000145024
-
Some limit theorems for empirical processes
-
GINÉ, E. and ZINN, J. (1984). Some limit theorems for empirical processes. Ann. Probab. 12 929-989.
-
(1984)
Ann. Probab.
, vol.12
, pp. 929-989
-
-
Giné, E.1
Zinn, J.2
-
20
-
-
0000337890
-
Strong uniform consistency rates for estimators of conditional functionals
-
HÄRDLE, W., JANSSEN, P. and SERFLING, R. (1988). Strong uniform consistency rates for estimators of conditional functionals. Ann. Statist. 16 1428-1449.
-
(1988)
Ann. Statist.
, vol.16
, pp. 1428-1449
-
-
Härdle, W.1
Janssen, P.2
Serfling, R.3
-
21
-
-
0011476499
-
A functional law of the iterated logarithm for weighted empirical distributions
-
JAMES, B. (1975). A functional law of the iterated logarithm for weighted empirical distributions. Ann. Probab. 3 762-772.
-
(1975)
Ann. Probab.
, vol.3
, pp. 762-772
-
-
James, B.1
-
22
-
-
0000411204
-
An approximation of partial sums of independent rv's and the sample df I
-
KOMLÓS, J., MAJOR, P. and TUSNÁDY, G. (1975). An approximation of partial sums of independent rv's and the sample df I. Z. Wahrsch. Verw. Gebiete 32 111-131.
-
(1975)
Z. Wahrsch. Verw. Gebiete
, vol.32
, pp. 111-131
-
-
Komlós, J.1
Major, P.2
Tusnády, G.3
-
23
-
-
0001411703
-
A strong invariance theorem for the tail empirical process
-
MASON, D. M. (1988). A strong invariance theorem for the tail empirical process. Ann. Inst. H. Poincaré Sect. B 24 491-506.
-
(1988)
Ann. Inst. H. Poincaré Sect. B
, vol.24
, pp. 491-506
-
-
Mason, D.M.1
-
24
-
-
84862384313
-
A uniform functional law of the logarithm for a local Gaussian process
-
(J. Hoffmann-Jorgensen, M. B. Marcus and J. A. Wellner, eds.). Birkhäuser, Boston
-
MASON, D. M. (2003). A uniform functional law of the logarithm for a local Gaussian process. In High Dimensional Probability III (J. Hoffmann-Jorgensen, M. B. Marcus and J. A. Wellner, eds.) 135-151. Birkhäuser, Boston.
-
(2003)
High Dimensional Probability III
, pp. 135-151
-
-
Mason, D.M.1
-
25
-
-
0007329899
-
Uniform consistency of automatic and location-adaptive delta-sequence estimators
-
NOLAN, D. and MARRON, J. S. (1989). Uniform consistency of automatic and location-adaptive delta-sequence estimators. Probab. Theory Related Fields 80 619-632.
-
(1989)
Probab. Theory Related Fields
, vol.80
, pp. 619-632
-
-
Nolan, D.1
Marron, J.S.2
-
26
-
-
0000579826
-
U-processes: Rates of convergence
-
NOLAN, D. and POLLARD, D. (1987). U-processes: Rates of convergence. Ann. Statist. 15 780-799.
-
(1987)
Ann. Statist.
, vol.15
, pp. 780-799
-
-
Nolan, D.1
Pollard, D.2
-
27
-
-
0000461110
-
An approach to time series analysis
-
PARZEN, E. (1961). An approach to time series analysis. Ann. Math. Statist. 32 951-989.
-
(1961)
Ann. Math. Statist.
, vol.32
, pp. 951-989
-
-
Parzen, E.1
-
28
-
-
0000032811
-
Weak convergence of a two-sample empirical process and a new approach to Chernoff-Savage theorems
-
PYKE, R. and SHORACK, G. R. (1968). Weak convergence of a two-sample empirical process and a new approach to Chernoff-Savage theorems. Ann. Math. Statist. 39 755-771.
-
(1968)
Ann. Math. Statist.
, vol.39
, pp. 755-771
-
-
Pyke, R.1
Shorack, G.R.2
-
29
-
-
21344483842
-
Local invariance principles and their applications to density estimation
-
RIO, E. (1994). Local invariance principles and their applications to density estimation. Probab. Theory Related Fields 98 21-45.
-
(1994)
Probab. Theory Related Fields
, vol.98
, pp. 21-45
-
-
Rio, E.1
-
32
-
-
0002894731
-
The oscillation behavior of empirical processes
-
STUTE, W. (1982a). The oscillation behavior of empirical processes. Ann. Probab. 10 86-107.
-
(1982)
Ann. Probab.
, vol.10
, pp. 86-107
-
-
Stute, W.1
-
33
-
-
0001297207
-
The law of the iterated logarithm for kernel density estimators
-
STUTE, W. (1982b). The law of the iterated logarithm for kernel density estimators. Ann. Probab. 10 414-422.
-
(1982)
Ann. Probab.
, vol.10
, pp. 414-422
-
-
Stute, W.1
-
34
-
-
0000318738
-
The oscillation behavior of empirical processes: The multivariate case
-
STUTE, W. (1984). The oscillation behavior of empirical processes: The multivariate case. Ann. Probab. 12 361-379.
-
(1984)
Ann. Probab.
, vol.12
, pp. 361-379
-
-
Stute, W.1
-
35
-
-
0001957366
-
Sharper bounds for Gaussian and empirical processes
-
TALAGRAND, M. (1994). Sharper bounds for Gaussian and empirical processes. Ann. Probab. 22 28-76.
-
(1994)
Ann. Probab.
, vol.22
, pp. 28-76
-
-
Talagrand, M.1
-
38
-
-
0000536552
-
Estimates of the Lévy-Prokhorov distance in the multivariate central limit theorem for random variables with finite exponential moments
-
ZAITSEV, A. YU. (1987a). Estimates of the Lévy-Prokhorov distance in the multivariate central limit theorem for random variables with finite exponential moments. Theory Probab. Appl. 31 203-220.
-
(1987)
Theory Probab. Appl.
, vol.31
, pp. 203-220
-
-
Zaitsev, A.Yu.1
-
39
-
-
34250101807
-
On the Gaussian approximation of convolutions under multidimensional analogues of S. N. Bernstein's inequality conditions
-
ZAITSEV, A. YU. (1987b). On the Gaussian approximation of convolutions under multidimensional analogues of S. N. Bernstein's inequality conditions. Probab. Theory Related Fields 74 534-566.
-
(1987)
Probab. Theory Related Fields
, vol.74
, pp. 534-566
-
-
Zaitsev, A.Yu.1
|