-
1
-
-
0004190197
-
-
Reading, MA: Addison-Wesley
-
Aho, A. V., Hopcroft, J. E., Ullman, J. D. (1983). Data Structures and Algorithms. Reading, MA: Addison-Wesley.
-
(1983)
Data Structures and Algorithms
-
-
Aho, A.V.1
Hopcroft, J.E.2
Ullman, J.D.3
-
2
-
-
0000974551
-
Plots of high dimensional data
-
Andrews, D. F. (1972). Plots of high dimensional data. Biometrics 28:125-136.
-
(1972)
Biometrics
, vol.28
, pp. 125-136
-
-
Andrews, D.F.1
-
6
-
-
0031571391
-
Connectivity of the mutual k-nearest-neighbors graph in outlier detection and clustering
-
Brito, M. R., Chavez, E. L., Quiroz, A. J., Yukich, J. E. (1997). Connectivity of the mutual k-nearest-neighbors graph in outlier detection and clustering. Statist. Probab. Lett. 35:33-42.
-
(1997)
Statist. Probab. Lett.
, vol.35
, pp. 33-42
-
-
Brito, M.R.1
Chavez, E.L.2
Quiroz, A.J.3
Yukich, J.E.4
-
7
-
-
84949331034
-
Using faces to represent points in k-dimensional space graphically
-
Chernoff, H. (1973). Using faces to represent points in k-dimensional space graphically. J. Amer. Statist. Assoc. 68:361-368.
-
(1973)
J. Amer. Statist. Assoc.
, vol.68
, pp. 361-368
-
-
Chernoff, H.1
-
10
-
-
3042674359
-
An introduction to wavelets with applications to Andrews' plots
-
Embrechts, P., Herzberg, A. M., Kalbfleisch, H. K., Traves, W. N., Whitla, J. R. (1995). An introduction to wavelets with applications to Andrews' plots. J. Comput. Appl. Math. 64:41-56.
-
(1995)
J. Comput. Appl. Math.
, vol.64
, pp. 41-56
-
-
Embrechts, P.1
Herzberg, A.M.2
Kalbfleisch, H.K.3
Traves, W.N.4
Whitla, J.R.5
-
14
-
-
84950460234
-
Distribution theory of runs: A Markov chain approach
-
Fu, J.C., Koutras, M.V. (1994). Distribution theory of runs: A Markov chain approach. J. Amer. Statist. Assoc. 89:1050-1058.
-
(1994)
J. Amer. Statist. Assoc.
, vol.89
, pp. 1050-1058
-
-
Fu, J.C.1
Koutras, M.V.2
-
15
-
-
0004640135
-
Complete linkage as a multiple stopping rule for single linkage clustering
-
Glasbey, C. A. (1987). Complete linkage as a multiple stopping rule for single linkage clustering. J. Classification 4:103-109.
-
(1987)
J. Classification
, vol.4
, pp. 103-109
-
-
Glasbey, C.A.1
-
17
-
-
0037445514
-
A clustering procedure based on the comparison between the k nearest neighbors graph and the minimal spanning tree
-
Gonzalez-Barrios, J. M., Quiroz, A. J. (2003). A clustering procedure based on the comparison between the k nearest neighbors graph and the minimal spanning tree. Statist. Probab. Lett. 62:23-34.
-
(2003)
Statist. Probab. Lett.
, vol.62
, pp. 23-34
-
-
Gonzalez-Barrios, J.M.1
Quiroz, A.J.2
-
18
-
-
0001120850
-
Minimum spanning trees and single linkage cluster analysis
-
Gower, J. C., Ross, G. J. S. (1969). Minimum spanning trees and single linkage cluster analysis. J. Royal Statist. Soc. (Series C) 18:54-64.
-
(1969)
J. Royal Statist. Soc. (Series C)
, vol.18
, pp. 54-64
-
-
Gower, J.C.1
Ross, G.J.S.2
-
19
-
-
0002726668
-
On the history of the minimum spanning tree problem
-
Graham, R. L., Hell, P. (1985). On the history of the minimum spanning tree problem. Ann. Hist. Comput. 7:43-57.
-
(1985)
Ann. Hist. Comput.
, vol.7
, pp. 43-57
-
-
Graham, R.L.1
Hell, P.2
-
21
-
-
0030291361
-
On the number of clusters
-
Hardy, A. (1996). On the number of clusters. Comput. Statist. Data Anal. 23:83-96.
-
(1996)
Comput. Statist. Data Anal.
, vol.23
, pp. 83-96
-
-
Hardy, A.1
-
23
-
-
3042532619
-
Andrews plots for multivariate data: Some new suggestions and applications
-
Khattree, R., Naik, D. N. (2002). Andrews plots for multivariate data: Some new suggestions and applications. J. Statist. Plann. Inf. 100:411-425.
-
(2002)
J. Statist. Plann. Inf.
, vol.100
, pp. 411-425
-
-
Khattree, R.1
Naik, D.N.2
-
24
-
-
0029427524
-
Runs, scans and urn model distributions; A unified Markov chain approach
-
Koutras, M. V., Alexandrou, V. A. (1995). Runs, scans and urn model distributions; A unified Markov chain approach. Ann. Inst. Statist. Math. 47(4):743-766.
-
(1995)
Ann. Inst. Statist. Math.
, vol.47
, Issue.4
, pp. 743-766
-
-
Koutras, M.V.1
Alexandrou, V.A.2
-
25
-
-
0009345505
-
A graph theoretic criterion for determining the number of cluster in a data set
-
Krolak-Schwerdt, S., Eckes, T. (1992). A graph theoretic criterion for determining the number of cluster in a data set. Multivariate Behav. Res. 27(4):541-565.
-
(1992)
Multivariate Behav. Res.
, vol.27
, Issue.4
, pp. 541-565
-
-
Krolak-Schwerdt, S.1
Eckes, T.2
-
26
-
-
70350674995
-
On the shortest spanning sub tree of a graph and a traveling salesman problem
-
Kruskal, J. B. (1956). On the shortest spanning sub tree of a graph and a traveling salesman problem. Proc. Amer. Math. Soc. 7:48-50.
-
(1956)
Proc. Amer. Math. Soc.
, vol.7
, pp. 48-50
-
-
Kruskal, J.B.1
-
27
-
-
38249022168
-
On binomial distributions of order
-
Ling, K. D. (1988). On binomial distributions of order k. Statist. Probab. Lett. 6:247-250.
-
(1988)
K. Statist. Probab. Lett.
, vol.6
, pp. 247-250
-
-
Ling, K.D.1
-
28
-
-
0000272920
-
An algorithm for generating artificial test clusters
-
Milligan, G. W. (1985). An algorithm for generating artificial test clusters. Psychometrika 50:123-127.
-
(1985)
Psychometrika
, vol.50
, pp. 123-127
-
-
Milligan, G.W.1
-
29
-
-
34250115918
-
An examination of procedures for determining the number of clusters in a data set
-
Milligan, G. W., Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika 50(2): 159-179.
-
(1985)
Psychometrika
, vol.50
, Issue.2
, pp. 159-179
-
-
Milligan, G.W.1
Cooper, M.C.2
-
30
-
-
0001450383
-
The distribution theory of runs
-
Mood, A. M. (1940). The distribution theory of runs. Ann. Math. Statist. 11:367-392.
-
(1940)
Ann. Math. Statist.
, vol.11
, pp. 367-392
-
-
Mood, A.M.1
-
31
-
-
84911584312
-
Shortest connection networks and some generalizations
-
Prim, R. C. (1957). Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36:1389-1401.
-
(1957)
Bell Syst. Tech. J.
, vol.36
, pp. 1389-1401
-
-
Prim, R.C.1
-
33
-
-
0000933735
-
On a test whether two samples are from the same population
-
Wald, A., Wolfowitz, J. (1940). On a test whether two samples are from the same population. Ann. Math. Statist. 11:147-162.
-
(1940)
Ann. Math. Statist.
, vol.11
, pp. 147-162
-
-
Wald, A.1
Wolfowitz, J.2
|