-
5
-
-
0001571132
-
-
and references therein
-
Y. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C-K. Peng and H. E. Stanley, Phys. Rev. E 60, 1390 (1999), and references therein.
-
(1999)
Phys. Rev. E
, vol.60
, pp. 1390
-
-
Liu, Y.1
Gopikrishnan, P.2
Cizeau, P.3
Meyer, M.4
Peng, C.-K.5
Stanley, H.E.6
-
7
-
-
0035998242
-
-
H-J. Kim, I-M. Kim, Y. Lee and B. Kahng, J. Korean Phys. Soc. 40, 1105 (2002).
-
(2002)
J. Korean Phys. Soc.
, vol.40
, pp. 1105
-
-
Kim, H.-J.1
Kim, I.-M.2
Lee, Y.3
Kahng, B.4
-
10
-
-
0029949064
-
-
S. Ghashghaie, W. Breymann, J. Peinke, P. Talkner and Y. Dodge, Nature 381, 767 (1996).
-
(1996)
Nature
, vol.381
, pp. 767
-
-
Ghashghaie, S.1
Breymann, W.2
Peinke, J.3
Talkner, P.4
Dodge, Y.5
-
12
-
-
30344464017
-
-
note
-
The volatility in terms of the price change in the logarithm of the S&P500 index has been studied in Ref. 5. The authors of Ref. 5 showed that the volatility distribution followed a lognormal with a power-law asymptotic behavior and that the volatility had a long-range correlation.
-
-
-
-
13
-
-
30344481842
-
-
note
-
Another way to define the price change is the difference in the logarithm of the price, that is, G(t) = In Z(t + ∇t) - In Z(t). The main reason for this definition is to compensate for a logarithmically increasing global trend that a stock index may have. Such a trend can be found, for instance, in the S&P500 [5]. In the case of the KOSPI, however, there is no such trend, as can be seen in Fig. 1 (a); thus, we adopt Eq. (1) as the definition of the price change.
-
-
-
-
14
-
-
0003502960
-
-
Chapman & Hall/CRC
-
Various methods for detecting a long-range dependence can be found: for example, in Jan Beran, Statistics for Long-Memory Processes (Chapman & Hall/CRC, 1994), p. 41.
-
(1994)
Statistics for Long-Memory Processes
, pp. 41
-
-
Beran, J.1
-
18
-
-
30344435514
-
-
note
-
A random variable X is log-normally distributed when Y = In X is normally distributed. Thus, if a random variable X follows a log-normal distribution, then Z = (In X - μ)/σ is a random variable of the standard Gaussian distribution N(0,1).
-
-
-
-
20
-
-
34547856203
-
-
C-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley and A. L. Goldberger, Phys. Rev. E 49, 1685 (1994).
-
(1994)
Phys. Rev. E
, vol.49
, pp. 1685
-
-
Peng, C.-K.1
Buldyrev, S.V.2
Havlin, S.3
Simons, M.4
Stanley, H.E.5
Goldberger, A.L.6
-
21
-
-
0029434863
-
-
C-K. Peng, S. Havlin, H. E. Stanley and A. Goldberger, Chaos 5, 82 (1995).
-
(1995)
Chaos
, vol.5
, pp. 82
-
-
Peng, C.-K.1
Havlin, S.2
Stanley, H.E.3
Goldberger, A.4
-
22
-
-
30344457785
-
-
note
-
In DFA, a local trend is usually represented by fitting a linear equation using a linear least-squares fit. Any non-linear regression, however, can also be used.
-
-
-
|