-
1
-
-
0242499516
-
High-Q photonic nanocavity in a two-dimensional photonic crystal
-
Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
-
(2003)
Nature
, vol.425
, pp. 944-947
-
-
Akahane, Y.1
Asano, T.2
Song, B.S.3
Noda, S.4
-
2
-
-
14744297810
-
Fine-tuned high-Q photonic-crystal nanocavity
-
Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005).
-
(2005)
Opt. Express
, vol.13
, pp. 1202-1214
-
-
Akahane, Y.1
Asano, T.2
Song, B.S.3
Noda, S.4
-
3
-
-
14744289272
-
Ultra-high-Q photonic double-heterostructure nanocavity
-
B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
-
(2005)
Nat. Mater.
, vol.4
, pp. 207-210
-
-
Song, B.S.1
Noda, S.2
Asano, T.3
Akahane, Y.4
-
4
-
-
0141921312
-
Experimental demonstration of a high quality factor photonic crystal microcavity
-
K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003).
-
(2003)
Appl. Phys. Lett.
, vol.83
, pp. 1915-1917
-
-
Srinivasan, K.1
Barclay, P.E.2
Painter, O.3
Chen, J.4
Cho, A.Y.5
Gmachl, C.6
-
5
-
-
84894014685
-
Optical nonlinear phenomenon in point-defect cavity in two-dimensional photonic crystal slab
-
T. Asano, W. Kunishi, M. Nakamura, B. S. Song, and S. Noda, "Optical nonlinear phenomenon in point-defect cavity in two-dimensional photonic crystal slab," Ext. Abstr. 65th Meet. Jpn. Soc. Appl. Phys. 65, 942 (2004).
-
(2004)
Ext. Abstr. 65th Meet. Jpn. Soc. Appl. Phys.
, vol.65
, pp. 942
-
-
Asano, T.1
Kunishi, W.2
Nakamura, M.3
Song, B.S.4
Noda, S.5
-
6
-
-
14844330709
-
Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper
-
P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005),
-
(2005)
Opt. Express
, vol.13
, pp. 801-820
-
-
Barclay, P.E.1
Srinivasan, K.2
Painter, O.3
-
7
-
-
21244486492
-
Optical bistable switching action of Si high-Q photonic-crystal nanocavities
-
M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005),
-
(2005)
Opt. Express
, vol.13
, pp. 2678-2687
-
-
Notomi, M.1
Shinya, A.2
Mitsugi, S.3
Kira, G.4
Kuramochi, E.5
Tanabe, T.6
-
8
-
-
0042281674
-
Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs
-
Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 83, 1512-1514 (2003).
-
(2003)
Appl. Phys. Lett.
, vol.83
, pp. 1512-1514
-
-
Akahane, Y.1
Asano, T.2
Song, B.S.3
Noda, S.4
-
9
-
-
0035934741
-
Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs
-
A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, "Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 79, 2690-2692 (2001).
-
(2001)
Appl. Phys. Lett.
, vol.79
, pp. 2690-2692
-
-
Chutinan, A.1
Mochizuki, M.2
Imada, M.3
Noda, S.4
-
10
-
-
0038528533
-
Third-order nonlinearities in silicon at telecom wavelengths
-
M. Dinu, E Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
-
(2003)
Appl. Phys. Lett.
, vol.82
, pp. 2954-2956
-
-
Dinu, M.1
Quochi, E.2
Garcia, H.3
-
11
-
-
12844284591
-
Dynamic wavelength tuning of channel-drop device in two-dimensional photonic crystal slab
-
T. Asano, W. Kunishi, M. Nakamura, B. S. Song, and S. Noda, "Dynamic wavelength tuning of channel-drop device in two-dimensional photonic crystal slab," Electron. Lett. 41, 37-38 (2005).
-
(2005)
Electron. Lett.
, vol.41
, pp. 37-38
-
-
Asano, T.1
Kunishi, W.2
Nakamura, M.3
Song, B.S.4
Noda, S.5
-
12
-
-
7544222004
-
Optical bistability on a silicon chip
-
V. R. Almeida and M. Lipson, "Optical bistability on a silicon chip," Opt. Lett. 29, 2387-2389 (2004).
-
(2004)
Opt. Lett.
, vol.29
, pp. 2387-2389
-
-
Almeida, V.R.1
Lipson, M.2
-
13
-
-
0032590959
-
Coupling of modes analysis of resonant channel add-drop filters
-
C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
-
(1999)
IEEE J. Quantum Electron.
, vol.35
, pp. 1322-1331
-
-
Manolatou, C.1
Khan, M.J.2
Fan, S.3
Villeneuve, P.R.4
Haus, H.A.5
Joannopoulos, J.D.6
-
14
-
-
6344247882
-
All-optical control of light on a silicon chip
-
V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
-
(2004)
Nature
, vol.431
, pp. 1081-1084
-
-
Almeida, V.R.1
Barrios, C.A.2
Panepucci, R.R.3
Lipson, M.4
-
15
-
-
0003524125
-
-
Springer-Verlag Berlin, Heidelberg, New York
-
K. H. Hellwege, O. Madelung, M. Schultz, and H. Weiss, LANDORT-BORNSTEIN New Series 17 (Springer-Verlag Berlin, Heidelberg, New York, 1982).
-
(1982)
LANDORT-BORNSTEIN New Series
, vol.17
-
-
Hellwege, K.H.1
Madelung, O.2
Schultz, M.3
Weiss, H.4
-
16
-
-
0000312623
-
Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm
-
G. Cocorullo, F. G. Della Corte, and I. Rendina, "Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm," Appl. Phys. Lett. 74, 3338-3340 (1999).
-
(1999)
Appl. Phys. Lett.
, vol.74
, pp. 3338-3340
-
-
Cocorullo, G.1
Della Corte, F.G.2
Rendina, I.3
-
17
-
-
84894014339
-
-
note
-
We confirmed that the FCA exceeded the TPA when we used the different value of free-carriers relaxation time in Ref. 6 (where it is described as free-carriers cross-section) for the calculation. However, the cavity characteristics remained similar, because the contributions of both the TPA and the FCA to the cavity characteristics occurred via a thermo-optic effect. It was therefore difficult to experimentally distinguish between these factors in the current work. We think that the TPA was larger than the FCA in this case because FCA is optical absorption consequent from TPA and also because free-carriers recombination time is as short as 0.5 ns.
-
-
-
|