-
1
-
-
0035877556
-
Permanence and existence in logistic and Lotka-Volterra systems with diffusion
-
J. Cui Permanence and existence in logistic and Lotka-Volterra systems with diffusion J Math Anal Appl 258 2001 512 535
-
(2001)
J Math Anal Appl
, vol.258
, pp. 512-535
-
-
Cui, J.1
-
2
-
-
0035877556
-
Permanence and extinction in logistic and Lotka-Volterra system with diffusion
-
J. Cui, and L.S. Chen Permanence and extinction in logistic and Lotka-Volterra system with diffusion J Math Anal Appl 258 2001 512 535
-
(2001)
J Math Anal Appl
, vol.258
, pp. 512-535
-
-
Cui, J.1
Chen, L.S.2
-
3
-
-
0036772463
-
The effect of dispersal on permanence in a predator-prey population growth model
-
J. Cui The effect of dispersal on permanence in a predator-prey population growth model Comput Math Appl 44 2002 1085 1097
-
(2002)
Comput Math Appl
, vol.44
, pp. 1085-1097
-
-
Cui, J.1
-
4
-
-
10644272712
-
Permanence of a single-species dispersal system and predator survival
-
J. Cui Permanence of a single-species dispersal system and predator survival J Comput Appl Math 175 2005 375 394
-
(2005)
J Comput Appl Math
, vol.175
, pp. 375-394
-
-
Cui, J.1
-
5
-
-
12444341915
-
The persistence in a Lotka-Volterra competition systems with impulsive
-
J. Zhen, M. Han, and G. Li The persistence in a Lotka-Volterra competition systems with impulsive Chaos, Solitons & Fractals 24 2005 1105 1117
-
(2005)
Chaos, Solitons & Fractals
, vol.24
, pp. 1105-1117
-
-
Zhen, J.1
Han, M.2
Li, G.3
-
6
-
-
2942641510
-
Dynamics of a nonautonomous predator-prey system with the beddington-deangelis functional response
-
M. Fan, and Y. Kuang Dynamics of a nonautonomous predator-prey system with the beddington-deangelis functional response J Math Anal Appl 295 2004 15 39
-
(2004)
J Math Anal Appl
, vol.295
, pp. 15-39
-
-
Fan, M.1
Kuang, Y.2
-
7
-
-
2942638131
-
Stability and Hopf bifurcations in a competitive Lotka-Volterra system with two delays
-
Y. Song, M. Han, and Y. Peng Stability and Hopf bifurcations in a competitive Lotka-Volterra system with two delays Chaos, Solitons & Fractals 22 2004 181 188
-
(2004)
Chaos, Solitons & Fractals
, vol.22
, pp. 181-188
-
-
Song, Y.1
Han, M.2
Peng, Y.3
-
8
-
-
1842476842
-
The existence of periodic solutions of the n-species Lotka-Volterra competition systems with impulsive
-
J. Zhen, Z. Ma, and M. Han The existence of periodic solutions of the n-species Lotka-Volterra competition systems with impulsive Chaos, Solitons & Fractals 22 2004 1139 1148
-
(2004)
Chaos, Solitons & Fractals
, vol.22
, pp. 1139-1148
-
-
Zhen, J.1
Ma, Z.2
Han, M.3
-
9
-
-
2342483169
-
Existence and global attractivity of positive periodic solution for delay Lotka-Volterra competition patch system with stocking
-
H. Fan, and Z. Wang Existence and global attractivity of positive periodic solution for delay Lotka-Volterra competition patch system with stocking J Math Anal Appl 293 2004 190 209
-
(2004)
J Math Anal Appl
, vol.293
, pp. 190-209
-
-
Fan, H.1
Wang, Z.2
-
10
-
-
0042995339
-
Global attractivity of the periodic Lotka-Volterra system
-
P. Yang, and R. Xu Global attractivity of the periodic Lotka-Volterra system J Math Anal Appl 233 1999 221 232
-
(1999)
J Math Anal Appl
, vol.233
, pp. 221-232
-
-
Yang, P.1
Xu, R.2
-
11
-
-
85048379311
-
Periodic solution for a delayed nonautonomous predator-prey system
-
S. Dong Periodic solution for a delayed nonautonomous predator-prey system J Syst Math Sci 23 4 2003 461 466
-
(2003)
J Syst Math Sci
, vol.23
, Issue.4
, pp. 461-466
-
-
Dong, S.1
-
12
-
-
0004034656
-
Coincidence degree and nonlinear differential equations
-
Springer Berlin
-
R. Gain, and J. Mawhin Coincidence degree and nonlinear differential equations Lecture Notes in Mathematics 1977 Springer Berlin
-
(1977)
Lecture Notes in Mathematics
-
-
Gain, R.1
Mawhin, J.2
|