메뉴 건너뛰기




Volumn 26, Issue 1 SPEC. ISS., 2006, Pages 60-77

Short proofs and a counterexample for analytical and numerical stability of delay equations with infinite memory

Author keywords

Asymptotic stability; Infinite memory; Joint spectral radius; Linear systems of DDEs; Variable coefficient difference equations; methods

Indexed keywords

ASYMPTOTIC STABILITY; DIFFERENCE EQUATIONS; DIFFERENTIAL EQUATIONS; LINEAR SYSTEMS; MATRIX ALGEBRA; PANTOGRAPHS;

EID: 30344459133     PISSN: 02724979     EISSN: 14643642     Source Type: Journal    
DOI: 10.1093/imanum/dri021     Document Type: Article
Times cited : (11)

References (24)
  • 1
    • 3042628713 scopus 로고    scopus 로고
    • Continuous Θ-methods for the stochastic pantograph equation
    • BAKER, C. T. H. & BUCKWAR, E. (2000) Continuous Θ-methods for the stochastic pantograph equation. Electron. Trans. Numer. Anal., 11, 131-151.
    • (2000) Electron. Trans. Numer. Anal. , vol.11 , pp. 131-151
    • Baker, C.T.H.1    Buckwar, E.2
  • 2
    • 0001442051 scopus 로고
    • Issues in the numerical solution of evolutionary delay differential equations
    • BAKER, C. T. H., PAUL, C. A. H. & WILLE, D. R. (1995) Issues in the numerical solution of evolutionary delay differential equations. Adv. Comput. Math., 3, 171-196.
    • (1995) Adv. Comput. Math. , vol.3 , pp. 171-196
    • Baker, C.T.H.1    Paul, C.A.H.2    Wille, D.R.3
  • 3
    • 0036031976 scopus 로고    scopus 로고
    • Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay
    • BELLEN, A. (2002) Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay. IMA J. Numer. Anal., 22, 529-536.
    • (2002) IMA J. Numer. Anal. , vol.22 , pp. 529-536
    • Bellen, A.1
  • 4
    • 0031211264 scopus 로고    scopus 로고
    • Asymptotic stability properties of Theta-methods for the pantograph equation
    • BELLEN, A. GUGLIELMI, N. & TORELLI, L. (1997) Asymptotic stability properties of Theta-methods for the pantograph equation. Appl. Numer. Math., 24, 279-293.
    • (1997) Appl. Numer. Math. , vol.24 , pp. 279-293
    • Bellen, A.1    Guglielmi, N.2    Torelli, L.3
  • 6
    • 0002046992 scopus 로고
    • Bounded semigroups of matrices
    • BERGER, M. A. & WANG, Y. (1992) Bounded semigroups of matrices. Linear Algebra Appl., 166, 21-27.
    • (1992) Linear Algebra Appl. , vol.166 , pp. 21-27
    • Berger, M.A.1    Wang, Y.2
  • 7
    • 0035541115 scopus 로고    scopus 로고
    • Geometric meshes in collocation methods for Volterra integral equations with proportional delays
    • BRUNNER, H., HU, Q. & LIN, Q. (2001) Geometric meshes in collocation methods for Volterra integral equations with proportional delays. IMA J. Numer. Anal., 21, 783-798.
    • (2001) IMA J. Numer. Anal. , vol.21 , pp. 783-798
    • Brunner, H.1    Hu, Q.2    Lin, Q.3
  • 8
    • 84968503713 scopus 로고
    • Stability of the discretized pantograph differential equation
    • BUHMANN, M. D. & ISERLES, A. (1993) Stability of the discretized pantograph differential equation. Math. Comput., 60, 575-589.
    • (1993) Math. Comput. , vol.60 , pp. 575-589
    • Buhmann, M.D.1    Iserles, A.2
  • 9
    • 84971116385 scopus 로고
    • The functional differential equation y′ (x) = ay (λx) + by (x)
    • CARR, J. & DYSON, J. (1975a) The functional differential equation y′ (x) = ay (λx) + by (x). Proc. R. Soc. Edinb. A, 13, 165-174.
    • (1975) Proc. R. Soc. Edinb. A , vol.13 , pp. 165-174
    • Carr, J.1    Dyson, J.2
  • 10
    • 0002879915 scopus 로고
    • The matrix functional differential equation y′ (x) = Ay (λx) + by (x)
    • CARR, J. & DYSON, J. (1975b) The matrix functional differential equation y′ (x) = Ay (λx) + By (x). Proc. R. Soc. Edinb. 75A, 2, 5-22.
    • (1975) Proc. R. Soc. Edinb. , vol.75 A , Issue.2 , pp. 5-22
    • Carr, J.1    Dyson, J.2
  • 11
    • 0003304056 scopus 로고
    • Stability and error bounds in the numerical integration of ordinary differential equations
    • DAHLQUIST, G. (1959) Stability and error bounds in the numerical integration of ordinary differential equations. Trans. R. Inst. Technol. Stockh., 130, 87.
    • (1959) Trans. R. Inst. Technol. Stockh. , vol.130 , pp. 87
    • Dahlquist, G.1
  • 13
    • 0040376588 scopus 로고
    • Pantograph motion on a nearly uniform railway overhead line
    • GILBERT, G. & DAVIES, H. A. H. (1966) Pantograph motion on a nearly uniform railway overhead line. Proc. IEE, 113, 485-492.
    • (1966) Proc. IEE , vol.113 , pp. 485-492
    • Gilbert, G.1    Davies, H.A.H.2
  • 14
    • 0034891830 scopus 로고    scopus 로고
    • Implementing Radau IIA methods for stiff delay differential equations
    • GUGLIELMI, N. & HAIRER, E. (2001) Implementing Radau IIA methods for stiff delay differential equations. Computing, 67, 1-12.
    • (2001) Computing , vol.67 , pp. 1-12
    • Guglielmi, N.1    Hairer, E.2
  • 15
    • 0038166019 scopus 로고    scopus 로고
    • Stability of one-leg Θ-methods for the variable coefficient pantograph equation on the quasi-geometric mesh
    • GUGLIELMI, N. & ZENNARO, M. (2003) Stability of one-leg Θ-methods for the variable coefficient pantograph equation on the quasi-geometric mesh. IMA J. Numer. Anal., 23, 421-438.
    • (2003) IMA J. Numer. Anal. , vol.23 , pp. 421-438
    • Guglielmi, N.1    Zennaro, M.2
  • 16
    • 27744546644 scopus 로고    scopus 로고
    • Discretized stability and error growth of the non-autonomous pantograph equation
    • HUANG, C. & VANDEWALLE, S. (2005) Discretized stability and error growth of the non-autonomous pantograph equation. SIAM J. Numer. Anal. 42, 2020-2042.
    • (2005) SIAM J. Numer. Anal. , vol.42 , pp. 2020-2042
    • Huang, C.1    Vandewalle, S.2
  • 17
    • 52649085452 scopus 로고
    • On the generalized pantograph functional-differential equation
    • ISERLES, A. (1993) On the generalized pantograph functional-differential equation. Eur. J. Appl. Math., 4, 1-38.
    • (1993) Eur. J. Appl. Math. , vol.4 , pp. 1-38
    • Iserles, A.1
  • 18
    • 0009028686 scopus 로고
    • Stability and asymptotic stability of functional-differential equations
    • ISERLES, A. & TERJEKI, J. (1995) Stability and asymptotic stability of functional-differential equations. J. Lond. Math. Soc., 51, 559-572.
    • (1995) J. Lond. Math. Soc. , vol.51 , pp. 559-572
    • Iserles, A.1    Terjeki, J.2
  • 19
    • 84966219417 scopus 로고
    • The functional-differential equation y′ (x) = ay (λx) + by (x)
    • KATO, T. & MCLEOD, J. B. (1971) The functional-differential equation y′ (x) = ay (λx) + by (x). Bull. Am. Math. Soc., 77, 891-937.
    • (1971) Bull. Am. Math. Soc. , vol.77 , pp. 891-937
    • Kato, T.1    Mcleod, J.B.2
  • 20
    • 22844457024 scopus 로고    scopus 로고
    • Stability of Runge-Kutta methods for the generalized pantograph equation
    • KOTO, T. (1999) Stability of Runge-Kutta methods for the generalized pantograph equation. Numer. Math., 84, 233-247.
    • (1999) Numer. Math. , vol.84 , pp. 233-247
    • Koto, T.1
  • 21
    • 0030523604 scopus 로고    scopus 로고
    • Asymptotic behavior of functional differential equations with proportional time delays
    • LIU, Y. (1996) Asymptotic behavior of functional differential equations with proportional time delays. Eur. J. Appl. Math., 7, 11-30.
    • (1996) Eur. J. Appl. Math. , vol.7 , pp. 11-30
    • Liu, Y.1
  • 22
    • 0001579514 scopus 로고
    • The dynamics of a current collection system for an electric locomotive
    • OCKENDON, J. R. & TAYLER, A. B. (1971) The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. Lond. A, 322, 447-468.
    • (1971) Proc. R. Soc. Lond. A , vol.322 , pp. 447-468
    • Ockendon, J.R.1    Tayler, A.B.2
  • 23
    • 0040944392 scopus 로고    scopus 로고
    • Asymptotic stability and generalized Gelfand spectral radius formula
    • SHIH, M. H., WU, J. W. & PANG, C. T. (1997) Asymptotic stability and generalized Gelfand spectral radius formula. Linear Algebra Appl., 252, 61-70.
    • (1997) Linear Algebra Appl. , vol.252 , pp. 61-70
    • Shih, M.H.1    Wu, J.W.2    Pang, C.T.3
  • 24
    • 31244435236 scopus 로고    scopus 로고
    • The discrete dynamics of nonlinear infinite-delay differential equations
    • ZHANG, C. & SUN, G. (2002) The discrete dynamics of nonlinear infinite-delay differential equations. Appl. Math. Lett., 15, 521-526.
    • (2002) Appl. Math. Lett. , vol.15 , pp. 521-526
    • Zhang, C.1    Sun, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.