-
1
-
-
0002349881
-
On the homotopical significance of the type of von Neumann algebra factors
-
[ASS71]
-
[ASS71] Araki, H., Bae Smith, M.-S., Smith, L.: On the homotopical significance of the type of von Neumann algebra factors. Commun. Math. Phys. 22, 71-88 (1971)
-
(1971)
Commun. Math. Phys.
, vol.22
, pp. 71-88
-
-
Araki, H.1
Bae Smith, M.-S.2
Smith, L.3
-
2
-
-
0030078515
-
Quantum tori and the structure of elliptic quasi-simple Lie algebras
-
[BGK96]
-
[BGK96] Berman, S., Gao, Y., Krylyuk, Y.: Quantum tori and the structure of elliptic quasi-simple Lie algebras. J. Funct. Anal. 135, 339-389 (1996)
-
(1996)
J. Funct. Anal.
, vol.135
, pp. 339-389
-
-
Berman, S.1
Gao, Y.2
Krylyuk, Y.3
-
3
-
-
0033229507
-
Irreducible representations for toroidal Lie algebras
-
[BB99]
-
[BB99] Berman, S., Billig, Y.: Irreducible representations for toroidal Lie algebras. J. Algebra 221, 188-231 (1999)
-
(1999)
J. Algebra
, vol.221
, pp. 188-231
-
-
Berman, S.1
Billig, Y.2
-
4
-
-
0000555802
-
Principe d'Oka, K-theorie et systèmes dynamiques non-commutatifs
-
[Bos90]
-
[Bos90] Bost, J.-B.: Principe d'Oka, K-theorie et systèmes dynamiques non-commutatifs. Invent. Math. 101, 261-333 (1990)
-
(1990)
Invent. Math.
, vol.101
, pp. 261-333
-
-
Bost, J.-B.1
-
5
-
-
0001836175
-
The space of loops on a Lie group
-
[Bo58]
-
[Bo58] Bott, R.: The space of loops on a Lie group. Michigan Math. J. 5, 35-61 (1958)
-
(1958)
Michigan Math. J.
, vol.5
, pp. 35-61
-
-
Bott, R.1
-
6
-
-
0035255676
-
Borel subalgebras and categories of highest weight modules for toroidal Lie algebras
-
[CF01]
-
[CF01] Cox, B., Futorny, V.: Borel subalgebras and categories of highest weight modules for toroidal Lie algebras. J. Algebra 236, 1-28 (2001)
-
(2001)
J. Algebra
, vol.236
, pp. 1-28
-
-
Cox, B.1
Futorny, V.2
-
8
-
-
21844507339
-
Central extensions of current groups in two dimensions
-
[EF94]
-
[EF94] Etingof, P.I., Frenkel, I.B.: Central extensions of current groups in two dimensions. Commun. Math. Phys. 165, 429-444 (1994)
-
(1994)
Commun. Math. Phys.
, vol.165
, pp. 429-444
-
-
Etingof, P.I.1
Frenkel, I.B.2
-
9
-
-
0009080159
-
On the cohomology of the Lie algebra of vector fields and the current algebra
-
[Fe88]
-
[Fe88] Feigin, B.L.: On the cohomology of the Lie algebra of vector fields and the current algebra. Sel. Math. Soc. 7(1), 49-62 (1988)
-
(1988)
Sel. Math. Soc.
, vol.7
, Issue.1
, pp. 49-62
-
-
Feigin, B.L.1
-
10
-
-
0002734990
-
Infinite-dimensional Lie groups without completeness condition
-
[G101a] A. Strasburger et al Eds., Banach Center Publications 55, Warszawa
-
[G101a] Glöckner, H.: Infinite-dimensional Lie groups without completeness condition. In: Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups. A. Strasburger et al Eds., Banach Center Publications 55, Warszawa 2002, pp. 53-59
-
(2002)
Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups
, pp. 53-59
-
-
Glöckner, H.1
-
11
-
-
0036808583
-
Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups
-
[G101b] to appear
-
[G101b] Glöckner, H.: Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups. J. Funct. Anal., to appear
-
J. Funct. Anal.
-
-
Glöckner, H.1
-
12
-
-
0036446267
-
Algebras whose groups of units are Lie groups
-
[G101c]
-
[G101c] Glöckner, H.: Algebras whose groups of units are Lie groups. Studia Math., 153, 147-177 (2002)
-
(2002)
Studia Math.
, vol.153
, pp. 147-177
-
-
Glöckner, H.1
-
13
-
-
0003244564
-
Produits tensoriels topologiques et espaces nucléaires
-
[Gr55] Prov., Rhode Island
-
[Gr55] Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. of the Amer. Math. Soc. 16, Prov., Rhode Island, 1955
-
(1955)
Mem. of the Amer. Math. Soc.
, vol.16
-
-
Grothendieck, A.1
-
14
-
-
0011555331
-
Homologie des algèbres de Lie étendues à une algèbre commutative
-
[Ha92]
-
[Ha92] Haddi, A.: Homologie des algèbres de Lie étendues à une algèbre commutative. Commun. in Alg. 20(4), 1145-1166 (1992)
-
(1992)
Commun. in Alg.
, vol.20
, Issue.4
, pp. 1145-1166
-
-
Haddi, A.1
-
16
-
-
0038351155
-
Homotopical cohomology and cech cohomology
-
[Hu61]
-
[Hu61] Huber, P.J.: Homotopical Cohomology and Cech Cohomology. Math. Annalen 144, 73-76 (1961)
-
(1961)
Math. Annalen
, vol.144
, pp. 73-76
-
-
Huber, P.J.1
-
17
-
-
0003023917
-
The convenient setting of global analysis
-
[KM97] Amer. Math. Soc.
-
[KM97] Kriegl, A., Michor, P.: The Convenient Setting of Global Analysis. Math. Surveys and Monographs 53, Amer. Math. Soc., 1997
-
(1997)
Math. Surveys and Monographs
, vol.53
-
-
Kriegl, A.1
Michor, P.2
-
19
-
-
0010118946
-
Four-dimensional avatars of two-dimensional RCFT
-
[LMNS96] Los Angeles, CA, World Sci. Publ., NJ
-
[LMNS96] Losev, A., Moore, G., Nekrasov, N., Shatashvili, S.: Four-dimensional avatars of two-dimensional RCFT. In: Strings 95, (Los Angeles, CA, 1995), World Sci. Publ., NJ, 1996, pp. 336-362
-
(1995)
Strings 95
, pp. 336-362
-
-
Losev, A.1
Moore, G.2
Nekrasov, N.3
Shatashvili, S.4
-
20
-
-
54649083826
-
Central extensions of gauge groups revisited
-
[LMNS98]
-
[LMNS98] Losev, A., Moore, G., Nekrasov, N., Shatashvili, S.: Central extensions of gauge groups revisited. Sel. math., New series 4, 117-123 (1998)
-
(1998)
Sel. Math., New Series
, vol.4
, pp. 117-123
-
-
Losev, A.1
Moore, G.2
Nekrasov, N.3
Shatashvili, S.4
-
21
-
-
0038351153
-
Central extensions of topological current algebras
-
[Ma02] A. Strasburger et al Eds., Banach Center Publications 55, Warszawa
-
[Ma02] Maier, P.: Central extensions of topological current algebras. In: Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups. A. Strasburger et al Eds., Banach Center Publications 55, Warszawa 2002, pp. 61-76
-
(2002)
Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups
, pp. 61-76
-
-
Maier, P.1
-
22
-
-
0000913066
-
Kac-Moody groups, topology of the Dirac determinant bundle, and fermionization
-
[Mic87]
-
[Mic87] Mickelsson, J.: Kac-Moody groups, topology of the Dirac determinant bundle, and fermionization. Commun. Math. Phys. 110, 173-183 (1987)
-
(1987)
Commun. Math. Phys.
, vol.110
, pp. 173-183
-
-
Mickelsson, J.1
-
24
-
-
0001335921
-
Remarks on infinite-dimensional Lie groups
-
[Mi183] B. DeWitt ed., Les Houches
-
[Mi183] Milnor, J.: Remarks on infinite-dimensional Lie groups. Proc. Summer School on Quantum Gravity, B. DeWitt ed., Les Houches, 1983
-
(1983)
Proc. Summer School on Quantum Gravity
-
-
Milnor, J.1
-
25
-
-
0001162960
-
Homotopy theory of Lie groups
-
[Mim95] I.M. James ed., North Holland
-
[Mim95] Mimura, M.: Homotopy theory of Lie groups. In: Handbook of Algebraic Topology. I.M. James ed., North Holland, 1995
-
(1995)
Handbook of Algebraic Topology
-
-
Mimura, M.1
-
26
-
-
0041739079
-
Borel-Weil theory for loop groups
-
[Ne01a] Infinite Dimensional Kahler Manifolds. Eds. A. Huckleberry, T. Wurzbacher, Birkhäuser Verlag
-
[Ne01a] Neeb, K.-H.: Borel-Weil Theory for Loop Groups. In: Infinite Dimensional Kahler Manifolds. Eds. A. Huckleberry, T. Wurzbacher, DMV-Seminar 31, Birkhäuser Verlag, 2001
-
(2001)
DMV-Seminar
, vol.31
-
-
Neeb, K.-H.1
-
27
-
-
0001860769
-
Representations of infinite dimensional groups
-
[Ne01b] Infinite Dimensional Kähler Manifolds. Eds. A. Huckleberry, T. Wurzbacher, Birkhäuser Verlag
-
[Ne01b] Neeb, K.-H.: Representations of infinite dimensional groups. In: Infinite Dimensional Kähler Manifolds. Eds. A. Huckleberry, T. Wurzbacher, DMV-Seminar 31, Birkhäuser Verlag, 2001
-
(2001)
DMV-Seminar
, vol.31
-
-
Neeb, K.-H.1
-
28
-
-
0036692741
-
Universal central extensions of Lie groups
-
[Ne01c]
-
[Ne01c] Neeb, K.-H.: Universal central extensions of Lie groups. Acta Appl. Math., 73(1,2), 175-219 (2002)
-
(2002)
Acta Appl. Math.
, vol.73
, Issue.1-2
, pp. 175-219
-
-
Neeb, K.-H.1
-
30
-
-
0038168011
-
Central extensions of infinite-dimensional Lie groups
-
[Ne02b]
-
[Ne02b] Neeb, K.-H.: Central extensions of infinite-dimensional Lie groups. Annales de l'Inst. Fourier, 52, 1305-1442 (2002)
-
(2002)
Annales de l'Inst. Fourier
, vol.52
, pp. 1305-1442
-
-
Neeb, K.-H.1
-
32
-
-
0013053279
-
Line bundles and conjugacy theorems for toroidal Lie algebras
-
[Pi00]
-
[Pi00] Pianzola, A.: Line bundles and conjugacy theorems for toroidal Lie algebras. C.R. Math. Acad. Sci. Soc. R. Can. 22, 125-128 (2000)
-
(2000)
C.R. Math. Acad. Sci. Soc. R. Can.
, vol.22
, pp. 125-128
-
-
Pianzola, A.1
-
33
-
-
0003863511
-
-
[PS86] Oxford University Press, Oxford
-
[PS86] Pressley, A., Segal, G.: Loop Groups. Oxford University Press, Oxford, 1986
-
(1986)
Loop Groups
-
-
Pressley, A.1
Segal, G.2
-
34
-
-
21144471732
-
Toroidal groups
-
[Shi92]
-
[Shi92] Zhiyang, S.: Toroidal groups. Comm. in Alg. 20(11), 3411-3458 (1992)
-
(1992)
Comm. in Alg.
, vol.20
, Issue.11
, pp. 3411-3458
-
-
Zhiyang, S.1
-
35
-
-
0040683828
-
Chevalley groups associated to elliptic Lie algebras
-
[Ta98]
-
[Ta98] Takebayashi, T.: Chevalley groups associated to elliptic Lie algebras. J. Algebra 210, 498-513 (1998)
-
(1998)
J. Algebra
, vol.210
, pp. 498-513
-
-
Takebayashi, T.1
-
36
-
-
0033425319
-
1
-
[Tan99]
-
1. Math. Z. 230, 621-657 (1999)
-
(1999)
Math. Z.
, vol.230
, pp. 621-657
-
-
Tan, Sh.1
-
38
-
-
84967712838
-
Automorphisms of group extensions
-
[We71]
-
[We71] Wells, Ch.: Automorphisms of group extensions. Transactions of the Amer. Math. Soc. 155(1), 189-194(1971)
-
(1971)
Transactions of the Amer. Math. Soc.
, vol.155
, Issue.1
, pp. 189-194
-
-
Wells, Ch.1
-
39
-
-
4344636466
-
Fermionic second quantization and the geometry of the restricted Grassmannian
-
[Wu01] Infinite Dimensional Kahler Manifolds. Eds. A. Huckleberry, T. Wurzbacher, Birkhäuser Verlag
-
[Wu01] Wurzbacher, T.: Fermionic second quantization and the geometry of the restricted Grassmannian. In: Infinite Dimensional Kahler Manifolds. Eds. A. Huckleberry, T. Wurzbacher, DMV-Seminar 31, Birkhäuser Verlag, 2001
-
(2001)
DMV-Seminar
, vol.31
-
-
Wurzbacher, T.1
|