-
1
-
-
0000931578
-
Metric space valued functions of bounded variation
-
AMBROSIO, L.: Metric space valued functions of bounded variation. Ann. Sc. Norm. Super. Pisa Cl. Sci. 17, 439-478 (1990)
-
(1990)
Ann. Sc. Norm. Super. Pisa Cl. Sci.
, vol.17
, pp. 439-478
-
-
Ambrosio, L.1
-
2
-
-
0010424294
-
Line energies for gradient vector fields in the plane
-
AMBROSIO, L., DELELLIS, C., MANTEGAZZA, C.: Line energies for gradient vector fields in the plane. Calc. Var. Partial Differential Equations 9, 327-355 (1999)
-
(1999)
Calc. Var. Partial Differential Equations
, vol.9
, pp. 327-355
-
-
Ambrosio, L.1
Delellis, C.2
Mantegazza, C.3
-
3
-
-
84935168793
-
Minimal interface criterion forphase transitions in mixtures of Cahn-Hilliard fluids
-
BALDO, S.: Minimal interface criterion forphase transitions in mixtures of Cahn-Hilliard fluids. Ann. Inst. H. Poicaré Anal. Non Linéaire 7, 67-90 (1990)
-
(1990)
Ann. Inst. H. Poicaré Anal. Non Linéaire
, vol.7
, pp. 67-90
-
-
Baldo, S.1
-
4
-
-
0000093666
-
A version of the fundamental theorem for Young measures
-
PDE's and Continuum Models of Phase Transitions. Springer-Verlag, Berlin
-
BALL, J.: A version of the fundamental theorem for Young measures. In: PDE's and Continuum Models of Phase Transitions, Lecture Notes in Physics 344. Springer-Verlag, Berlin, pp. 207-215, 1989
-
(1989)
Lecture Notes in Physics
, vol.344
, pp. 207-215
-
-
Ball, J.1
-
5
-
-
33750297145
-
Fine phase mixtures as minimizers of the energy
-
BALL, J., JAMES, R.D.: Fine phase mixtures as minimizers of the energy. Arch. Ration. Mech. Anal. 100, 13-52 (1987)
-
(1987)
Arch. Ration. Mech. Anal.
, vol.100
, pp. 13-52
-
-
Ball, J.1
James, R.D.2
-
6
-
-
84973976275
-
Anisotropic singular perturbations - The vectorial case
-
BARROSO, A.C., FONSECA, I.: Anisotropic singular perturbations - the vectorial case. Proc. Roy. Soc. Edin. Sect. A 124, 527-571 (1994)
-
(1994)
Proc. Roy. Soc. Edin. Sect. A
, vol.124
, pp. 527-571
-
-
Barroso, A.C.1
Fonseca, I.2
-
8
-
-
33846814955
-
Singular perturbations of variational problems arising from a two-phase transition model
-
BOUCHITTÉ, G.: Singular perturbations of variational problems arising from a two-phase transition model. Appl. Math. Optim. 21, 289-314 (1990)
-
(1990)
Appl. Math. Optim.
, vol.21
, pp. 289-314
-
-
Bouchitté, G.1
-
11
-
-
0012576576
-
A Γ-convergence result for the two-gradient theory of phase transitions
-
CONTI, S., FONSECA, I., LEONI, G.: A Γ-convergence result for the two-gradient theory of phase transitions. Comm. Pure Appl. Math. 55, 857-936 (2002)
-
(2002)
Comm. Pure Appl. Math.
, vol.55
, pp. 857-936
-
-
Conti, S.1
Fonseca, I.2
Leoni, G.3
-
13
-
-
33748381840
-
A compactness result in the gradient theory of phase transitions
-
DESIMONE, A., KOHN, R.V., MÜLLER, S., OTTO, F: A compactness result in the gradient theory of phase transitions. Proc. Roy. Soc. Edinburgh Sect. A 131, 833-844 (2001)
-
(2001)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.131
, pp. 833-844
-
-
Desimone, A.1
Kohn, R.V.2
Müller, S.3
Otto, F.4
-
14
-
-
21844510408
-
Microstructures with finite surface energy: The two-well problem
-
DOLZMANN, G., MÜLLER, S.: Microstructures with finite surface energy: the two-well problem. Arch. Ration. Mech. Anal. 132, 101-141 (1995)
-
(1995)
Arch. Ration. Mech. Anal.
, vol.132
, pp. 101-141
-
-
Dolzmann, G.1
Müller, S.2
-
15
-
-
0034345334
-
Second order singular perturbation models for phase transitions
-
FONSECA, I., MANTEGAZZA, C.: Second order singular perturbation models for phase transitions. SIAM J. Math. Anal. 31, 1121-1143 (2000)
-
(2000)
SIAM J. Math. Anal.
, vol.31
, pp. 1121-1143
-
-
Fonseca, I.1
Mantegazza, C.2
-
16
-
-
84975994718
-
The gradient theory of phase transitions for systems with two potential wells
-
FONSECA, I., TARTAR, L.: The gradient theory of phase transitions for systems with two potential wells. Proc. Roy. Soc. Edinburgh Sect. A 111, 89-102 (1989)
-
(1989)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.111
, pp. 89-102
-
-
Fonseca, I.1
Tartar, L.2
-
18
-
-
0000011064
-
Singular perturbation and the energy of folds
-
JIN, W., KOHN, R.V.: Singular perturbation and the energy of folds. J. Nonlinear Sci. 10, 355-390 (2000)
-
(2000)
J. Nonlinear Sci.
, vol.10
, pp. 355-390
-
-
Jin, W.1
Kohn, R.V.2
-
19
-
-
84990706266
-
Surface energy and microstructure in coherent phase transitions
-
KOHN, R.V., MÜLLER, S.: Surface energy and microstructure in coherent phase transitions. Comm. Pure Appl. Math. 47, 405-435 (1994)
-
(1994)
Comm. Pure Appl. Math.
, vol.47
, pp. 405-435
-
-
Kohn, R.V.1
Müller, S.2
-
21
-
-
24844436270
-
Large sets not containing images of a given sequence
-
KOMJÁTH, P.: Large sets not containing images of a given sequence. Canad. Math. Bull. 26, 41-43 (1983)
-
(1983)
Canad. Math. Bull.
, vol.26
, pp. 41-43
-
-
Komjáth, P.1
-
22
-
-
0142033336
-
Structure of entropy solutions to the eikonal equation
-
DE LELLIS, C., OTTO, F.: Structure of entropy solutions to the eikonal equation. J. Eur. Math. Soc. 5, 107-145 (2003)
-
(2003)
J. Eur. Math. Soc.
, vol.5
, pp. 107-145
-
-
De Lellis, C.1
Otto, F.2
-
24
-
-
0002142597
-
Variational models for microstructure and phase transitions
-
Calculus of variations and geometric evolution problems (F. Bethuel et al., eds.). Springer, Berlin
-
MÜLLER, S.: Variational models for microstructure and phase transitions. In: Calculus of variations and geometric evolution problems (F. Bethuel et al., eds.), Springer Lecture Notes in Math. 1713. Springer, Berlin, pp. 85-210, 1999
-
(1999)
Springer Lecture Notes in Math.
, vol.1713
, pp. 85-210
-
-
Müller, S.1
-
25
-
-
0001387066
-
Nonconvex variational problems with anisotropic perturbations
-
OWEN, N.C., STERNBERG, P.: Nonconvex variational problems with anisotropic perturbations. Nonlinear Anal. 16, 705-719 (1991)
-
(1991)
Nonlinear Anal.
, vol.16
, pp. 705-719
-
-
Owen, N.C.1
Sternberg, P.2
-
26
-
-
0000482727
-
Vector-valued local minimizers of nonconvex variational problems
-
STERNBERG, P.: Vector-valued local minimizers of nonconvex variational problems. Rocky Mountain J. Math. 21, 799-807 (1991)
-
(1991)
Rocky Mountain J. Math.
, vol.21
, pp. 799-807
-
-
Sternberg, P.1
|