메뉴 건너뛰기




Volumn 50, Issue 1, 2006, Pages 11-20

Estimating the initial pressure, permeability and skin factor of oil reservoirs using artificial neural networks

Author keywords

Artificial neural networks; Initial pressure; Permeability; Pressure build up test; Skin factor; Well test

Indexed keywords

INITIAL PRESSURE; PRESSURE BUILD UP TEST; SKIN FACTOR;

EID: 29944432874     PISSN: 09204105     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.petrol.2005.09.002     Document Type: Article
Times cited : (70)

References (21)
  • 2
    • 0027790610 scopus 로고
    • Using artificial neural nets to identify the well-test interpretation model
    • A.U. Al-Kaabi W.J. Lee Using artificial neural nets to identify the well-test interpretation model SPE Form. Eval. 8 3 1993 233-240
    • (1993) SPE Form. Eval. , vol.8 , Issue.3 , pp. 233-240
    • Al-Kaabi, A.U.1    Lee, W.J.2
  • 4
    • 0027850138 scopus 로고
    • Discrimination between reservoir models in Well Test Analysis
    • Presented at the SPE Annual Technical Conference and Exhibition held in Houston, Texas, October 1993, SPE
    • T. Anraku R.N. Horne Discrimination between reservoir models in Well Test Analysis Presented at the 1993 SPE Annual Technical Conference and Exhibition held in Houston, Texas, October 1993, SPE 26426 1993
    • (1993)
    • Anraku, T.1    Horne, R.N.2
  • 5
    • 0034233231 scopus 로고    scopus 로고
    • Neural networks in geophysical applications
    • M. Bean C. Jutten Neural networks in geophysical applications Geophysics 65 2000 1032-1047
    • (2000) Geophysics , vol.65 , pp. 1032-1047
    • Bean, M.1    Jutten, C.2
  • 6
    • 0036864174 scopus 로고    scopus 로고
    • Committee neural networks for porosity and permeability prediction from well logs
    • A. Bhatt H.B. Helle Committee neural networks for porosity and permeability prediction from well logs Geophys. Prospect. 50 2002 645-660
    • (2002) Geophys. Prospect , vol.50 , pp. 645-660
    • Bhatt, A.1    Helle, H.B.2
  • 8
    • 0004050544 scopus 로고
    • 2nd edition New York: Society of Petroleum Engineers of AIME
    • R.C. Earlougher Advances in Well Test Analysis 2nd edition 1977 Society of Petroleum Engineers of AIME New York
    • (1977) Advances in Well Test Analysis
    • Earlougher, R.C.1
  • 12
    • 29944438957 scopus 로고
    • Advances in Computer-Aided Well Test Interpretation
    • Presented at the 67th SPE Annual Technical Conference and Exhibition held in Washington, DC, October 1992, SPE 24731
    • R.N. Horn Advances in Computer-Aided Well Test Interpretation Presented at the 1992 67th SPE Annual Technical Conference and Exhibition held in Washington, DC, October 1992, SPE 24731 1992
    • (1992)
    • Horn, R.N.1
  • 14
    • 85041273043 scopus 로고
    • Pressure build-up in wells
    • Third World Pet. Cong. E.J, Brill, II: 503
    • Horner, D.R., 1951. Pressure build-up in wells. Third World Pet. Cong., E.J, Brill, II: 503.
    • (1951)
    • Horner, D.R.1
  • 15
    • 0003554146 scopus 로고    scopus 로고
    • Copyright 2001 by the Mathworks, Inc
    • Matlab User's Guide, Copyright 2001 by the Mathworks, Inc.
    • Matlab User's Guide
  • 16
    • 0009661287 scopus 로고
    • The estimation of permeability and reservoir pressure from bottom hole pressure build-up characteristics
    • C.C. Miller A.B. Dyes C.A. Hutchinson The estimation of permeability and reservoir pressure from bottom hole pressure build-up characteristics AIME 189 1950 91-104
    • (1950) AIME , vol.189 , pp. 91-104
    • Miller, C.C.1    Dyes, A.B.2    Hutchinson, C.A.3
  • 19
    • 3042692113 scopus 로고
    • Use of data on the build-up of bottom hole pressures
    • M. Muskat Use of data on the build-up of bottom hole pressures AIME 123 1937 44-48
    • (1937) AIME , vol.123 , pp. 44-48
    • Muskat, M.1
  • 21
    • 0030737837 scopus 로고    scopus 로고
    • A dynamic neural network approach to non-linear processing modeling
    • A.M. Shaw F.J. Doyle J.S. Schwaber A dynamic neural network approach to non-linear processing modeling Comput. Chem. Eng. 21 1997 371-385
    • (1997) Comput. Chem. Eng. , vol.21 , pp. 371-385
    • Shaw, A.M.1    Doyle, F.J.2    Schwaber, J.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.