메뉴 건너뛰기




Volumn 23, Issue 2, 2006, Pages 229-240

Aizenman's theorem for orthogonal polynomials on the unit circle

Author keywords

Localization; OPUC; Random Verblunsky coefficients

Indexed keywords


EID: 29644443613     PISSN: 01764276     EISSN: 14320940     Source Type: Journal    
DOI: 10.1007/s00365-005-0599-4     Document Type: Article
Times cited : (14)

References (19)
  • 1
    • 0001324593 scopus 로고
    • Localization at weak disorder: Some elementary bounds
    • M. AIZENMAN (1994): Localization at weak disorder: Some elementary bounds. Rev. Math. Phys., 6:1163-1182.
    • (1994) Rev. Math. Phys. , vol.6 , pp. 1163-1182
    • Aizenman, M.1
  • 2
    • 21344491724 scopus 로고
    • Localization at large disorder and at extreme energies: An elementary derivation
    • M. AIZENMAN, S. MOLCHANOV (1994): Localization at large disorder and at extreme energies: An elementary derivation. Comm. Math. Phys., 157:245-278.
    • (1994) Comm. Math. Phys. , vol.157 , pp. 245-278
    • Aizenman, M.1    Molchanov, S.2
  • 3
    • 52449142230 scopus 로고
    • On exponential representations of analytic functions in the upper half-plane with positive imaginary part
    • N. ARONSZAJN, W. F. DONOGHUE (1957): On exponential representations of analytic functions in the upper half-plane with positive imaginary part. J. Analyse Math., 5:321-388.
    • (1957) J. Analyse Math. , vol.5 , pp. 321-388
    • Aronszajn, N.1    Donoghue, W.F.2
  • 4
    • 8744268774 scopus 로고    scopus 로고
    • Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle
    • M. J. CANTERO, L. MORAL, L. VELAZQUEZ (2003): Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl., 362:29-56.
    • (2003) Linear Algebra Appl. , vol.362 , pp. 29-56
    • Cantero, M.J.1    Moral, L.2    Velazquez, L.3
  • 5
    • 0000280495 scopus 로고    scopus 로고
    • Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization
    • R. DEL RIO, S. JITOMIRSKAYA, Y. LAST, B. SIMON (1996): Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization. J. Analyse Math., 69:153-200.
    • (1996) J. Analyse Math. , vol.69 , pp. 153-200
    • Del Rio, R.1    Jitomirskaya, S.2    Last, Y.3    Simon, B.4
  • 8
    • 0035486215 scopus 로고    scopus 로고
    • Szego difference equations, transfermatrices and orthogonal polynomials on the unit circle
    • L. GOLINSKII, P. NEVAI (2001): Szego difference equations, transfermatrices and orthogonal polynomials on the unit circle. Comm. Math. Phys., 223:223-259.
    • (2001) Comm. Math. Phys. , vol.223 , pp. 223-259
    • Golinskii, L.1    Nevai, P.2
  • 9
    • 4344689487 scopus 로고    scopus 로고
    • A new proof of Poltoratskii's theorem
    • V. JAKŠIĆ, Y. LAST (2004): A new proof of Poltoratskii's theorem. J. Funct. Anal., 215:103-110.
    • (2004) J. Funct. Anal. , vol.215 , pp. 103-110
    • Jakšić, V.1    Last, Y.2
  • 11
    • 0003264896 scopus 로고
    • Sur les fonctions harmoniques conjuguées et les séries de Fourier
    • A. KOLMOGOROV (1925): Sur les fonctions harmoniques conjuguées et les séries de Fourier. Fund. Math., 7:24-29.
    • (1925) Fund. Math. , vol.7 , pp. 24-29
    • Kolmogorov, A.1
  • 12
    • 0030553788 scopus 로고    scopus 로고
    • Local fluctuation of the spectrum of a multidimensional Anderson tight binding model
    • N. MINAMI (1996): Local fluctuation of the spectrum of a multidimensional Anderson tight binding model. Comm. Math. Phys., 177:709-725.
    • (1996) Comm. Math. Phys. , vol.177 , pp. 709-725
    • Minami, N.1
  • 13
    • 0000493642 scopus 로고
    • The boundary behavior of pseudocontinuable functions
    • A. G. POLTORATSKII (1994): The boundary behavior of pseudocontinuable functions. St. Petersburg Math. J., 5:389-406.
    • (1994) St. Petersburg Math. J. , vol.5 , pp. 389-406
    • Poltoratskii, A.G.1
  • 14
    • 0001758451 scopus 로고
    • Spectral analysis of rank one perturbations and applications
    • Proc. Mathematical Quantum Theory, II: Schrödinger Operators (J. Feldman, R. Froese, L. Rosen, eds.). Providence, RI: American Mathematical Society
    • B. SIMON (1995): Spectral analysis of rank one perturbations and applications. In: Proc. Mathematical Quantum Theory, II: Schrödinger Operators (J. Feldman, R. Froese, L. Rosen, eds.). CRM Proc. Lecture Notes, Vol. 8. Providence, RI: American Mathematical Society, pp. 109-149.
    • (1995) CRM Proc. Lecture Notes , vol.8 , pp. 109-149
    • Simon, B.1
  • 15
    • 17844397091 scopus 로고    scopus 로고
    • Orthogonal polynomials on the unit circle, vol. 1: Classical theory
    • Providence, RI: American Mathematical Society
    • B. SIMON (2005): Orthogonal Polynomials on the Unit Circle, Vol. 1: Classical Theory. AMS Colloquium Series. Providence, RI: American Mathematical Society.
    • (2005) AMS Colloquium Series
    • Simon, B.1
  • 16
    • 17844397091 scopus 로고    scopus 로고
    • Orthogonal polynomials on the unit circle, vol. 2: Spectral theory
    • Providence, RI: American Mathematical Society
    • B. SIMON (2005): Orthogonal Polynomials on the Unit Circle, Vol. 2: Spectral Theory. AMS Colloquium Series. Providence, RI: American Mathematical Society.
    • (2005) AMS Colloquium Series
    • Simon, B.1
  • 17
    • 84990576488 scopus 로고
    • Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians
    • B. SIMON, T. WOLFF (1986): Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians. Comm. Pure Appl. Math., 39:75-90.
    • (1986) Comm. Pure Appl. Math. , vol.39 , pp. 75-90
    • Simon, B.1    Wolff, T.2
  • 19
    • 0003339568 scopus 로고
    • Orthogonal polynomials
    • Providence, RI: American Mathematical Society, 3rd edition, 1967
    • G. SZEGO (1939): Orthogonal Polynomials. Amer. Math. Soc. Colloq. Publ., Vol. 23. Providence, RI: American Mathematical Society, 3rd edition, 1967.
    • (1939) Amer. Math. Soc. Colloq. Publ. , vol.23
    • Szego, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.