메뉴 건너뛰기




Volumn 63, Issue 4, 2001, Pages

Information theory based on nonadditive information content

Author keywords

[No Author keywords available]

Indexed keywords

CODES (SYMBOLS); FRACTALS; PROBABILITY DISTRIBUTIONS; RANDOM PROCESSES; STATISTICAL MECHANICS; THEOREM PROVING;

EID: 29444456404     PISSN: 1063651X     EISSN: None     Source Type: Journal    
DOI: 10.1103/PhysRevE.63.046105     Document Type: Article
Times cited : (38)

References (30)
  • 8
    • 3943109883 scopus 로고
    • J. Phys. ACorrigenda 24, 3187 (1991);
    • (1991) J. Phys. A , vol.24 , pp. 3187
  • 9
    • 0026881891 scopus 로고
    • J. Phys. ACorrigenda25, 1019 (1992).
    • (1992) J. Phys. A , vol.25 , pp. 1019
  • 10
    • 85035262494 scopus 로고    scopus 로고
    • http://tsallis.cat.cbpf.br/biblio.htm for an updated bibliography
    • http://tsallis.cat.cbpf.br/biblio.htm for an updated bibliography.
  • 15
    • 85035294586 scopus 로고    scopus 로고
    • The definition Eq. (11) corresponds to taking the nonadditive conditional entropy as the form (Formula presented)
    • The definition Eq. (11) corresponds to taking the nonadditive conditional entropy as the form (Formula presented)
  • 18
    • 85035273152 scopus 로고    scopus 로고
    • From the definition, we can easily confirm (Formula presented) if and only if, X and Y are independent variables. That is, (Formula presented) Moreover, since (Formula presented) we obtain (Formula presented)
    • From the definition, we can easily confirm (Formula presented) if and only if, X and Y are independent variables. That is, (Formula presented) Moreover, since (Formula presented) we obtain (Formula presented)
  • 21
    • 85035282006 scopus 로고    scopus 로고
    • We also note that our definition of (Formula presented) corresponds to (Formula presented) in Ref. 7
    • We also note that our definition of (Formula presented) corresponds to (Formula presented) in Ref. 7.
  • 26
    • 85035254661 scopus 로고    scopus 로고
    • We will report the extension of the theorem elsewhere
    • We will report the extension of the theorem elsewhere.
  • 30
    • 0004056426 scopus 로고
    • W. K. Ford Benjamin, New York
    • E. T. Jaynes, in Statistical Physics, edited by W. K. Ford (Benjamin, New York, 1963).
    • (1963) Statistical Physics
    • Jaynes, E.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.