메뉴 건너뛰기




Volumn 69, Issue 4-6, 2006, Pages 586-614

A new approach to fuzzy classifier systems and its application in self-generating neuro-fuzzy systems

Author keywords

Bucket brigade algorithm; Classifier systems; Neural networks; Neuro fuzzy systems; Reinforcement learning

Indexed keywords

FUZZY SETS; GENETIC ALGORITHMS; LEARNING SYSTEMS; MEMBERSHIP FUNCTIONS; PROBLEM SOLVING; VECTORS;

EID: 29444443130     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2004.11.033     Document Type: Article
Times cited : (13)

References (65)
  • 2
    • 29444439937 scopus 로고
    • Cognitive arithmetic: A review of data and theory
    • S. Dehaene (Ed.), Blackwell Press Cambridge, MA
    • M.H. Ashcraft Cognitive arithmetic: A review of data and theory in: S. Dehaene (Ed.), Numerical Cognition 1993 Blackwell Press Cambridge, MA
    • (1993) Numerical Cognition
    • Ashcraft, M.H.1
  • 3
    • 0020970738 scopus 로고
    • Neuron like adaptive elements that can solve difficult learning control problems
    • A.G. Barto R.S. Sutton C.W. Anderson Neuron like adaptive elements that can solve difficult learning control problems IEEE Trans. Syst. Man Cybern. 13 5 1983 834-846
    • (1983) IEEE Trans. Syst. Man Cybern. , vol.13 , Issue.5 , pp. 834-846
    • Barto, A.G.1    Sutton, R.S.2    Anderson, C.W.3
  • 4
    • 0026923465 scopus 로고
    • Learning and tuning fuzzy logic controllers through reinforcements
    • H.R. Berenji P. Khedkar Learning and tuning fuzzy logic controllers through reinforcements IEEE Trans. Neural Networks 3 5 1992 724-740
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.5 , pp. 724-740
    • Berenji, H.R.1    Khedkar, P.2
  • 6
    • 23044519454 scopus 로고    scopus 로고
    • Learning fuzzy classifier systems
    • L. Lanzi W. Stolzmann S.W. Wilson (Eds.) Springer Berlin
    • A. Bonarini Learning fuzzy classifier systems in: L. Lanzi W. Stolzmann S.W. Wilson (Eds.), Learning Classifier System New Directions and Concepts 2000 Springer Berlin 83-106
    • (2000) Learning Classifier System New Directions and Concepts , pp. 83-106
    • Bonarini, A.1
  • 7
    • 0035359275 scopus 로고    scopus 로고
    • An approach to the design of reinforcement functions in real world, agent-based applications
    • A. Bonarini C. Bonacina M. Matteucci An approach to the design of reinforcement functions in real world, agent-based applications IEEE Trans. Syst. Man Cybern.-Part B 31 3 2001 288-301
    • (2001) IEEE Trans. Syst. Man Cybern.-Part B , vol.31 , Issue.3 , pp. 288-301
    • Bonarini, A.1    Bonacina, C.2    Matteucci, M.3
  • 8
    • 0035426729 scopus 로고    scopus 로고
    • Learning fuzzy classifier systems for multi-agent coordination
    • A. Bonarini V. Trianni Learning fuzzy classifier systems for multi-agent coordination Inf. Sci. 136 2001 215-239
    • (2001) Inf. Sci. , vol.136 , pp. 215-239
    • Bonarini, A.1    Trianni, V.2
  • 9
    • 0003862635 scopus 로고
    • Intelligent behavior as an adaptation to the task environment
    • L.B. Booker Intelligent behavior as an adaptation to the task environment Diss. Abstr. Int. 43 2 1982 469B
    • (1982) Diss. Abstr. Int. , vol.43 , Issue.2
    • Booker, L.B.1
  • 14
    • 0003597001 scopus 로고
    • Incremental learning, or the importance of starting small
    • Technical Report 9101, Center for Research in Language, University of California, San Diego
    • J.L. Elman, Incremental learning, or the importance of starting small, Technical Report 9101, Center for Research in Language, University of California, San Diego 1991.
    • (1991)
    • Elman, J.L.1
  • 15
    • 0001412821 scopus 로고    scopus 로고
    • A study on fuzzy classifier system for finding control knowledge of multi-input systems
    • T. Furuhashi K. Nakaoka Y. Uchikawa A study on fuzzy classifier system for finding control knowledge of multi-input systems J. Stud. Fuzziness Soft Comput. 8 1996 489-502
    • (1996) J. Stud. Fuzziness Soft Comput. , vol.8 , pp. 489-502
    • Furuhashi, T.1    Nakaoka, K.2    Uchikawa, Y.3
  • 20
    • 0001666176 scopus 로고
    • Cognitive systems based on adaptive algorithms
    • D.A. Waterman F. Hayes-Roth Pattern (Eds.), Academic Press New York
    • J.H. Holland J.S. Reitman Cognitive systems based on adaptive algorithms in: D.A. Waterman F. Hayes-Roth Pattern (Eds.), Directed Inference Systems 1978 Academic Press New York 313-329
    • (1978) Pattern Directed Inference Systems , pp. 313-329
    • Holland, J.H.1    Reitman, J.S.2
  • 21
    • 0026923902 scopus 로고
    • On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm
    • S. Horikawa T. Furuhashi Y. Uchikawa On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm IEEE Trans. Neural Networks 3 5 1992 801-806
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.5 , pp. 801-806
    • Horikawa, S.1    Furuhashi, T.2    Uchikawa, Y.3
  • 22
    • 0033329971 scopus 로고    scopus 로고
    • Improving the performance of fuzzy classifier systems for pattern classification problems with continuous attributes
    • H. Ishibuchi T. Nakashima Improving the performance of fuzzy classifier systems for pattern classification problems with continuous attributes IEEE Trans. Ind. Electron. 46 6 1999 1057-1068
    • (1999) IEEE Trans. Ind. Electron , vol.46 , Issue.6 , pp. 1057-1068
    • Ishibuchi, H.1    Nakashima, T.2
  • 23
    • 0032597810 scopus 로고    scopus 로고
    • Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems
    • H. Ishibuchi T. Nakashima T. Murata Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems IEEE Trans. Syst. Man Cybern.-Part B 29 5 1999 601-618
    • (1999) IEEE Trans. Syst. Man Cybern.-Part B , vol.29 , Issue.5 , pp. 601-618
    • Ishibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 24
    • 0001683059 scopus 로고
    • Task decomposition through competition in a modular connectionist architecture: The what and where visual tasks
    • R.A. Jacobs M.I. Jordan A.G. Barto Task decomposition through competition in a modular connectionist architecture: The what and where visual tasks Cognitive Sci. 15 1991 219-250
    • (1991) Cognitive Sci. , vol.15 , pp. 219-250
    • Jacobs, R.A.1    Jordan, M.I.2    Barto, A.G.3
  • 27
    • 0000612809 scopus 로고
    • Fuzzy basis functions: Comparisons with other basis functions
    • H.M. Kim J.M. Mendel Fuzzy basis functions: Comparisons with other basis functions IEEE Trans. Fuzzy Syst. 3 2 1995 158-168
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.2 , pp. 158-168
    • Kim, H.M.1    Mendel, J.M.2
  • 28
    • 0023983407 scopus 로고
    • The 'neural' phonetic typewriter
    • T. Kohonen The 'neural' phonetic typewriter IEEE Comput. 27 3 1988 11-12
    • (1988) IEEE Comput. , vol.27 , Issue.3 , pp. 11-12
    • Kohonen, T.1
  • 30
    • 0026837390 scopus 로고
    • Adaptive fuzzy systems for backing up a truck-and-trailer
    • S.-G. Kong B. Kosko Adaptive fuzzy systems for backing up a truck-and-trailer IEEE Trans. Neural Networks 3 2 1992 211-223
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.2 , pp. 211-223
    • Kong, S.-G.1    Kosko, B.2
  • 31
    • 0034314744 scopus 로고    scopus 로고
    • Designing classifier fusion systems by genetic algorithms
    • L.I. Kuncheva L.C. Jain Designing classifier fusion systems by genetic algorithms IEEE Trans. Evol. Comput. 4 4 2000 327-336
    • (2000) IEEE Trans. Evol. Comput. , vol.4 , Issue.4 , pp. 327-336
    • Kuncheva, L.I.1    Jain, L.C.2
  • 33
    • 0035792091 scopus 로고    scopus 로고
    • Construction of fuzzy basis function networks using adaptive least squares method
    • C.W. Lee, Y.C. Shin, Construction of fuzzy basis function networks using adaptive least squares method, IFSA World Congress and 20th NAFIPS International Conference, vol. 5, 2001, pp. 2630-2635.
    • (2001) IFSA World Congress and 20th NAFIPS International Conference , vol.5 , pp. 2630-2635
    • Lee, C.W.1    Shin, Y.C.2
  • 34
    • 0037332304 scopus 로고    scopus 로고
    • Self-organizing neuro-fuzzy system for control of unknown plants
    • C.S. Li C.Y. Lee Self-organizing neuro-fuzzy system for control of unknown plants IEEE Trans. Fuzzy Syst. 11 1 2003 135-150
    • (2003) IEEE Trans. Fuzzy Syst. , vol.11 , Issue.1 , pp. 135-150
    • Li, C.S.1    Lee, C.Y.2
  • 35
    • 0030147547 scopus 로고    scopus 로고
    • Reinforcement learning for an ART-based fuzzy adaptive learning control network
    • C.J. Lin C.T. Lin Reinforcement learning for an ART-based fuzzy adaptive learning control network IEEE Trans. Neural Networks 7 3 1996 709-731
    • (1996) IEEE Trans. Neural Networks , vol.7 , Issue.3 , pp. 709-731
    • Lin, C.J.1    Lin, C.T.2
  • 36
    • 0031268065 scopus 로고    scopus 로고
    • An ART-based fuzzy adaptive learning control network
    • C.J. Lin C.T. Lin An ART-based fuzzy adaptive learning control network IEEE Trans. Fuzzy Syst. 5 4 1997 477-496
    • (1997) IEEE Trans. Fuzzy Syst. , vol.5 , Issue.4 , pp. 477-496
    • Lin, C.J.1    Lin, C.T.2
  • 37
    • 0028369322 scopus 로고
    • Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems
    • C.T. Lin C.S.G. Lee Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems IEEE Trans. Fuzzy Syst. 2 1 1994 46-63
    • (1994) IEEE Trans. Fuzzy Syst. , vol.2 , Issue.1 , pp. 46-63
    • Lin, C.T.1    Lee, C.S.G.2
  • 39
    • 0026900986 scopus 로고
    • Cognitive mechanisms in numerical processing: Evidence from acquired dyscalculia
    • M. McCloskey Cognitive mechanisms in numerical processing: Evidence from acquired dyscalculia Cognition 44 1993 107-157
    • (1993) Cognition , vol.44 , pp. 107-157
    • McCloskey, M.1
  • 40
    • 0035391755 scopus 로고    scopus 로고
    • Learning to trade via direct reinforcement
    • J. Moody M. Saffell Learning to trade via direct reinforcement IEEE Trans. Neural Networks 12 2 2001 875-889
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.2 , pp. 875-889
    • Moody, J.1    Saffell, M.2
  • 42
    • 0036565201 scopus 로고    scopus 로고
    • Subsethood-product fuzzy neural inference system
    • S. Paul S. Kumar Subsethood-product fuzzy neural inference system IEEE Trans. Neural Networks 13 3 2002 578-599
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.3 , pp. 578-599
    • Paul, S.1    Kumar, S.2
  • 43
    • 0036570250 scopus 로고    scopus 로고
    • Reinforcement learning agents
    • C. Ribeiro Reinforcement learning agents Artif. Intell. Rev. 17 2002 223-250
    • (2002) Artif. Intell. Rev. , vol.17 , pp. 223-250
    • Ribeiro, C.1
  • 44
    • 0343486134 scopus 로고    scopus 로고
    • A general method for multi-agent learning and incremental self-improvement in unrestricted environments
    • X. Yao (Ed.) Scientific Publ. Co., Singapore
    • J. Schmidhuber, A general method for multi-agent learning and incremental self-improvement in unrestricted environments, in: X. Yao (Ed.), Evolutionary Computation: Theory and Applications, Scientific Publ. Co., Singapore, 1996.
    • (1996) Evolutionary Computation: Theory and Applications
    • Schmidhuber, J.1
  • 45
    • 0035273403 scopus 로고    scopus 로고
    • Online learning control by association and reinforcement
    • J. Si Y.T. Wang Online learning control by association and reinforcement IEEE Trans. Neural Networks 12 2 2001 264-276
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.2 , pp. 264-276
    • Si, J.1    Wang, Y.T.2
  • 47
    • 0038884509 scopus 로고
    • Is a learning classifier system a type of neural network?
    • R.E. Smith H.B. Cribbs III Is a learning classifier system a type of neural network? Evol. Comput. 2 1 1994 13-36
    • (1994) Evol. Comput. , vol.2 , Issue.1 , pp. 13-36
    • Smith, R.E.1    Cribbs III, H.B.2
  • 49
    • 1842850313 scopus 로고    scopus 로고
    • Identification of singleton fuzzy models via fuzzy hyper-rectangular composite NN
    • H. Hellendoorn D. Driankov (Eds.), Springer Berlin
    • M.C. Su Identification of singleton fuzzy models via fuzzy hyper-rectangular composite NN in: H. Hellendoorn D. Driankov (Eds.), Fuzzy Model Identification: Selected Approaches 1997 Springer Berlin 193-212
    • (1997) Fuzzy Model Identification: Selected Approaches , pp. 193-212
    • Su, M.C.1
  • 50
    • 0000542956 scopus 로고    scopus 로고
    • Neural-network-based fuzzy model and its application to transient stability prediction in power system
    • M.C. Su C.W. Lin S.S. Tsay Neural-network-based fuzzy model and its application to transient stability prediction in power system IEEE Trans. Syst. Man Cybern. 29 1 1999 149-157
    • (1999) IEEE Trans. Syst. Man Cybern. , vol.29 , Issue.1 , pp. 149-157
    • Su, M.C.1    Lin, C.W.2    Tsay, S.S.3
  • 51
    • 33847202724 scopus 로고
    • Learning to predict by the methods of temporal differences
    • R.S. Sutton Learning to predict by the methods of temporal differences Mach. Learn. 3 1988 9-44
    • (1988) Mach. Learn. , vol.3 , pp. 9-44
    • Sutton, R.S.1
  • 53
    • 0036737109 scopus 로고    scopus 로고
    • GenSoFNN: A generic self-organizing fuzzy neural network
    • W.T. Tung C. Quek GenSoFNN: A generic self-organizing fuzzy neural network IEEE Trans. Neural Networks 13 5 2002 1075-1086
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.5 , pp. 1075-1086
    • Tung, W.T.1    Quek, C.2
  • 55
    • 0033171998 scopus 로고    scopus 로고
    • Fuzzy-associative-memory-based knowledge construction with an application to a human-machine interface
    • H. Ushida T. Yamaguchi T. Takagi Fuzzy-associative-memory-based knowledge construction with an application to a human-machine interface IEEE Trans. Ind. Electron. 46 4 1999 851-860
    • (1999) IEEE Trans. Ind. Electron , vol.46 , Issue.4 , pp. 851-860
    • Ushida, H.1    Yamaguchi, T.2    Takagi, T.3
  • 56
  • 57
    • 0026928374 scopus 로고
    • Fuzzy basis functions, universal approximation, and orthogonal least-squares learning
    • L.X. Wang J.M. Mendel Fuzzy basis functions, universal approximation, and orthogonal least-squares learning IEEE Trans. Neural Networks 3 5 1992 807-814
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.5 , pp. 807-814
    • Wang, L.X.1    Mendel, J.M.2
  • 58
    • 0026943536 scopus 로고
    • Generating fuzzy rules by learning from examples
    • L.X. Wang J.M. Mendel Generating fuzzy rules by learning from examples IEEE Trans. Syst. Man Cybern. 22 6 1992 1414-1427
    • (1992) IEEE Trans. Syst. Man Cybern. , vol.22 , Issue.6 , pp. 1414-1427
    • Wang, L.X.1    Mendel, J.M.2
  • 61
    • 3042994191 scopus 로고
    • Perceptron redux: Emergence of structure
    • S. Forrest (Ed.) MIT Press, Cambridge, MA, Physica D
    • S.W. Wilson, Perceptron redux: Emergence of structure, in: S. Forrest (Ed.), Emergent Computation, MIT Press, Cambridge, MA, Physica D 42(1-3) (1990) 249-256.
    • (1990) Emergent Computation , vol.42 , Issue.1-3 , pp. 249-256
    • Wilson, S.W.1
  • 62
    • 0001387704 scopus 로고
    • Classifier fitness based on accuracy
    • S.W. Wilson Classifier fitness based on accuracy Evol. Comput. 3 2 1995 147-175
    • (1995) Evol. Comput. , vol.3 , Issue.2 , pp. 147-175
    • Wilson, S.W.1
  • 63
    • 0042643357 scopus 로고    scopus 로고
    • Get real! XCS with continuous-valued inputs
    • P.L. Lanzi W. Stolzmann S.W. Wilson (Eds.), Springer Berlin
    • S.W. Wilson Get real! XCS with continuous-valued inputs in: P.L. Lanzi W. Stolzmann S.W. Wilson (Eds.), Learning Classifier Systems: From Foundations to Applications 2000 Springer Berlin 209-220
    • (2000) Learning Classifier Systems: From Foundations to Applications , pp. 209-220
    • Wilson, S.W.1
  • 64
    • 29444453460 scopus 로고    scopus 로고
    • A study on skill acquisition in trailer-truck steering problem by reinforcement learning
    • S. Yamashita, T. Horiuchi, S. Kato, A study on skill acquisition in trailer-truck steering problem by reinforcement learning, Proceedings of the 41st SICE Annual Conference, vol. 2, 2002, pp. 810-812.
    • (2002) Proceedings of the 41st SICE Annual Conference , vol.2 , pp. 810-812
    • Yamashita, S.1    Horiuchi, T.2    Kato, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.