메뉴 건너뛰기




Volumn 48, Issue 2, 2006, Pages 161-175

Integration of articulatory and spectrum features based on the hybrid HMM/BN modeling framework

Author keywords

Articulatory modeling; HMM BN; Multiple feature integration

Indexed keywords

ACCELERATION; DATA ACQUISITION; DATABASE SYSTEMS; MATHEMATICAL MODELS; SPEECH COMMUNICATION;

EID: 29444436962     PISSN: 01676393     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.specom.2005.07.003     Document Type: Article
Times cited : (46)

References (26)
  • 2
    • 84875953283 scopus 로고    scopus 로고
    • Clustering via the Bayesian information criterion with applications in speech recognition
    • May
    • Chen, S., Gopalakrishnan, P., 1998. Clustering via the Bayesian information criterion with applications in speech recognition. In: Proc. ICASSP, May, Vol. 2, pp. 645-648.
    • (1998) Proc. ICASSP , vol.2 , pp. 645-648
    • Chen, S.1    Gopalakrishnan, P.2
  • 3
    • 0013237073 scopus 로고    scopus 로고
    • Introduction to inference for Bayesian Networks
    • M. Jordan Kluwer Academic Publishers
    • R. Cowell Introduction to inference for Bayesian Networks M. Jordan Learning in Graphical Models 1998 Kluwer Academic Publishers 9 26
    • (1998) Learning in Graphical Models , pp. 9-26
    • Cowell, R.1
  • 4
    • 84962892151 scopus 로고    scopus 로고
    • Continuous multi-band speech recognition using Bayesian Networks
    • Daoudi, K., Fohr, D., Antoine, C., 2001. Continuous multi-band speech recognition using Bayesian Networks. In: Proc. ASRU.
    • (2001) Proc. ASRU
    • Daoudi, K.1    Fohr, D.2    Antoine, C.3
  • 5
    • 85055854784 scopus 로고
    • Probabilistic temporal reasoning
    • Dean, T., Kanazawa, K., 1988. Probabilistic temporal reasoning. In: AAAI, pp. 524-528.
    • (1988) AAAI , pp. 524-528
    • Dean, T.1    Kanazawa, K.2
  • 6
    • 0026854213 scopus 로고
    • A generalized hidden Markov model with state-conditioned trend functions of time for the speech signal
    • L. Deng A generalized hidden Markov model with state-conditioned trend functions of time for the speech signal Signal Process. 27 1992 65 78
    • (1992) Signal Process. , vol.27 , pp. 65-78
    • Deng, L.1
  • 7
    • 0032119268 scopus 로고    scopus 로고
    • A dynamic, feature-based approach to the interface between phonology and phonetics for speech modeling and recognition
    • L. Deng A dynamic, feature-based approach to the interface between phonology and phonetics for speech modeling and recognition Speech Comm. 24 4 1998 299 323
    • (1998) Speech Comm. , vol.24 , Issue.4 , pp. 299-323
    • Deng, L.1
  • 10
    • 85009110670 scopus 로고    scopus 로고
    • Multistage co-articulation model combining articulatory, formant and cepstral features
    • Gao, Y., Bakis, R., Huang, J., Xiang, B., 2000. Multistage co-articulation model combining articulatory, formant and cepstral features. In: Proc. ICSLP, pp. 25-28.
    • (2000) Proc. ICSLP , pp. 25-28
    • Gao, Y.1    Bakis, R.2    Huang, J.3    Xiang, B.4
  • 11
    • 0002370418 scopus 로고    scopus 로고
    • A tutorial on learning with Bayesian Networks
    • M. Jordan Kluwer Academic Publishers
    • D. Heckerman A tutorial on learning with Bayesian Networks M. Jordan Learning in Graphical Models 1998 Kluwer Academic Publishers 301 354
    • (1998) Learning in Graphical Models , pp. 301-354
    • Heckerman, D.1
  • 12
    • 2142659020 scopus 로고    scopus 로고
    • Estimation of articulatory movements from speech acoustics using a HMM-based speech production model
    • S. Hiroya, and M. Honda Estimation of articulatory movements from speech acoustics using a HMM-based speech production model IEEE Trans. SAP 12 2 2004 175 185
    • (2004) IEEE Trans. SAP , vol.12 , Issue.2 , pp. 175-185
    • Hiroya, S.1    Honda, M.2
  • 14
    • 0034829062 scopus 로고    scopus 로고
    • A stochastic articulatory-to-acoustic mapping as a basis for speech recognition
    • Hogden, J., Valdez, P., 2001. A stochastic articulatory-to-acoustic mapping as a basis for speech recognition. In: Proc. IEEE IMTC, Vol. 2, pp. 1105-1110.
    • (2001) Proc. IEEE IMTC , vol.2 , pp. 1105-1110
    • Hogden, J.1    Valdez, P.2
  • 16
    • 0003424928 scopus 로고    scopus 로고
    • Robust speech recognition using articulatory information
    • International Computer Science Institute
    • Kirchhoff, K., 1998. Robust speech recognition using articulatory information, Tech. Rep. TR-98-037, International Computer Science Institute.
    • (1998) Tech. Rep. , vol.TR-98-037
    • Kirchhoff, K.1
  • 17
    • 0033693063 scopus 로고    scopus 로고
    • Conversational speech recognition using acoustic and articulatory input
    • Kirchhoff, K., Fink, G., Sagerer, G., 2000. Conversational speech recognition using acoustic and articulatory input. In: Proc. ICASSP, Vol. III, p. 1435.
    • (2000) Proc. ICASSP , vol.3 , pp. 1435
    • Kirchhoff, K.1    Fink, G.2    Sagerer, G.3
  • 18
    • 0029907249 scopus 로고    scopus 로고
    • Landmark detection for distinctive feature-based speech recognition
    • S. Liu Landmark detection for distinctive feature-based speech recognition J. Acoust. Soc. Amer. 1996 3417 3430
    • (1996) J. Acoust. Soc. Amer. , pp. 3417-3430
    • Liu, S.1
  • 19
    • 0038043500 scopus 로고    scopus 로고
    • A hybrid HMM/BN acoustic model for automatic speech recognition
    • K. Markov, and S. Nakamura A hybrid HMM/BN acoustic model for automatic speech recognition IEICE Trans. Inf. Systems E86-D 3 2003 438 445
    • (2003) IEICE Trans. Inf. Systems , vol.E86-D , Issue.3 , pp. 438-445
    • Markov, K.1    Nakamura, S.2
  • 20
    • 0141590455 scopus 로고    scopus 로고
    • Hybrid HMM/BN LVCSR system integrating multiple acoustic features
    • Markov, K., Nakamura, S., 2003b. Hybrid HMM/BN LVCSR system integrating multiple acoustic features. In: Proc. ICASSP, Vol. I, pp. 888-891.
    • (2003) Proc. ICASSP , vol.1 , pp. 888-891
    • Markov, K.1    Nakamura, S.2
  • 21
    • 29444447186 scopus 로고    scopus 로고
    • Hybrid HMM/BN ASR system integrating spectrum and articulatory features
    • Markov, K., Dang, J., Iizuka, Y., Nakamura, S., 2003. Hybrid HMM/BN ASR system integrating spectrum and articulatory features. In: Proc. Eurospeech, pp. 965-968.
    • (2003) Proc. Eurospeech , pp. 965-968
    • Markov, K.1    Dang, J.2    Iizuka, Y.3    Nakamura, S.4
  • 22
    • 0034932995 scopus 로고    scopus 로고
    • Generation of articulatory movements by using a kinetic triphone model
    • T. Okadome, and M. Honda Generation of articulatory movements by using a kinetic triphone model J. Acoust. Soc. Amer. 110 2001 453 463
    • (2001) J. Acoust. Soc. Amer. , vol.110 , pp. 453-463
    • Okadome, T.1    Honda, M.2
  • 23
    • 0026675669 scopus 로고
    • Inferring articulation and recognizing gestures from acoustics with a neural network trained in X-ray microbeam data
    • G. Papcun, J. Hochberg, T. Thomas, F. Larouche, J. Zacks, and S. Levy Inferring articulation and recognizing gestures from acoustics with a neural network trained in X-ray microbeam data J. Acoust. Soc. Amer. 1992 688 700
    • (1992) J. Acoust. Soc. Amer. , pp. 688-700
    • Papcun, G.1    Hochberg, J.2    Thomas, T.3    Larouche, F.4    Zacks, J.5    Levy, S.6
  • 24
    • 85009097228 scopus 로고    scopus 로고
    • Modeling auxiliary information in Bayesian Network based ASR
    • Stephenson, T., Mathew, M., Bourlard, H., 2001. Modeling auxiliary information in Bayesian Network based ASR. In: Proc. Eurospeech, pp. 2765-2768.
    • (2001) Proc. Eurospeech , pp. 2765-2768
    • Stephenson, T.1    Mathew, M.2    Bourlard, H.3
  • 26
    • 0028464701 scopus 로고
    • A new neural network for articulatory speech recognition and its application to vowel identification
    • J. Zacks, and T. Thomas A new neural network for articulatory speech recognition and its application to vowel identification Computer Speech Lang. 8 3 1994 189 209
    • (1994) Computer Speech Lang. , vol.8 , Issue.3 , pp. 189-209
    • Zacks, J.1    Thomas, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.