-
1
-
-
0027071524
-
Interlaminar interface modeling for the prediction of delamination
-
Allix O. Ladeveze P. Interlaminar interface modeling for the prediction of delamination Compos. Struct. 22 1992 235-242
-
(1992)
Compos. Struct.
, vol.22
, pp. 235-242
-
-
Allix, O.1
Ladeveze, P.2
-
2
-
-
0021384182
-
A continuum mechanics based four-node shell element for general nonlinear analysis
-
Bathe K.J. Dvorkin E.N. A continuum mechanics based four-node shell element for general nonlinear analysis Engrg. Comput. 1 1984 77-88
-
(1984)
Engrg. Comput.
, vol.1
, pp. 77-88
-
-
Bathe, K.J.1
Dvorkin, E.N.2
-
4
-
-
0001317365
-
A nonlinear extensible 4-node shell element based on continuum theory and assumed strain interpolations
-
Betsch P. Stein E. A nonlinear extensible 4-node shell element based on continuum theory and assumed strain interpolations J. Nonlinear Sci. 6 1996 169-199
-
(1996)
J. Nonlinear Sci.
, vol.6
, pp. 169-199
-
-
Betsch, P.1
Stein, E.2
-
5
-
-
0032824650
-
Delamination behavior of spliced Fiber Metal Laminates. Part 2. Numerical investigation
-
Hashagen F. de Borst R. de Vries T. Delamination behavior of spliced Fiber Metal Laminates. Part 2. Numerical investigation Compos. Struct. 46 1999 147-162
-
(1999)
Compos. Struct.
, vol.46
, pp. 147-162
-
-
Hashagen, F.1
de Borst, R.2
de Vries, T.3
-
6
-
-
0343673910
-
Numerical assessment of delamination in fibre metal laminates
-
Hashagen F. de Borst R. Numerical assessment of delamination in fibre metal laminates Comput. Methods Appl. Mech. Engrg. 185 2000 141-159
-
(2000)
Comput. Methods Appl. Mech. Engrg.
, vol.185
, pp. 141-159
-
-
Hashagen, F.1
de Borst, R.2
-
7
-
-
0037053934
-
Geometrically non-linear damage interface based on regularized strong discontinuity
-
Larsson R. Jansson N. Geometrically non-linear damage interface based on regularized strong discontinuity Int. J. Numer. Methods Engrg. 54 2002 473-497
-
(2002)
Int. J. Numer. Methods Engrg.
, vol.54
, pp. 473-497
-
-
Larsson, R.1
Jansson, N.2
-
8
-
-
0035507952
-
Delamination buckling of fibre-metal laminates
-
Remmers J.J.C. de Borst R. Delamination buckling of fibre-metal laminates Compos. Sci. Tech. 61 2001 2207-2213
-
(2001)
Compos. Sci. Tech.
, vol.61
, pp. 2207-2213
-
-
Remmers, J.J.C.1
de Borst, R.2
-
9
-
-
0026867998
-
Geometrically non-linear enhanced strain mixed method and the method of incompatible modes
-
Simo J.C. Armero F. Geometrically non-linear enhanced strain mixed method and the method of incompatible modes Int. J. Numer. Methods Engrg. 33 1992 1413-1449
-
(1992)
Int. J. Numer. Methods Engrg.
, vol.33
, pp. 1413-1449
-
-
Simo, J.C.1
Armero, F.2
-
10
-
-
0034188186
-
Delamination growth analysis in laminated structures with continuum based 3D-shell elements and a viscoplastic softering rule
-
Sprenger W. Gruttmann F. Wagner W. Delamination growth analysis in laminated structures with continuum based 3D-shell elements and a viscoplastic softering rule Comput. Methods Appl. Mech. Engrg. 185 2000 123-139
-
(2000)
Comput. Methods Appl. Mech. Engrg.
, vol.185
, pp. 123-139
-
-
Sprenger, W.1
Gruttmann, F.2
Wagner, W.3
-
11
-
-
2942730120
-
FE-modeling of fiber reinforced polymer structures
-
Mang, H.A., Rammerstorfer, F.G., Eberhardsteiner, J., (Eds.), July 7-12, Vienna, Austria, Vienna University of Technology, Austria, ISBN 3-9501554-0-6
-
W. Wagner, F. Gruttmann, FE-modeling of fiber reinforced polymer structures, in: Mang, H.A., Rammerstorfer, F.G., Eberhardsteiner, J., (Eds.), Proceedings of 5th World Congress on Computational Mechanics (WCCM V), July 7-12, 2002, Vienna, Austria, Vienna University of Technology, Austria, ISBN 3-9501554-0-6, http://wccm.tuwien.ac.at
-
(2002)
Proceedings of 5th World Congress on Computational Mechanics (WCCM V)
-
-
Wagner, W.1
Gruttmann, F.2
-
12
-
-
0035972097
-
A new method for modelling cohesive cracks using finite elements
-
Wells G.N. Sluys L.J. A new method for modelling cohesive cracks using finite elements Int. J. Numer. Methods Engrg. 50 2001 2667-2682
-
(2001)
Int. J. Numer. Methods Engrg.
, vol.50
, pp. 2667-2682
-
-
Wells, G.N.1
Sluys, L.J.2
|