-
11
-
-
0000853548
-
-
Z. Toroczkai, G. Károlyi, A. Péntek, T. Tél, and C. Grebogi, Phys. Rev. Lett. 80, 500 (1998); G. Károlyi, A. Péntek, Z. Toroczkai, T. Tél, and C. Grebogi, Phys. Rev. E 59, 5468 (1999).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 500
-
-
Toroczkai, Z.1
Károlyi, G.2
Péntek, A.3
Tél, T.4
Grebogi, C.5
-
12
-
-
0001480609
-
-
Z. Toroczkai, G. Károlyi, A. Péntek, T. Tél, and C. Grebogi, Phys. Rev. Lett. 80, 500 (1998); G. Károlyi, A. Péntek, Z. Toroczkai, T. Tél, and C. Grebogi, Phys. Rev. E 59, 5468 (1999).
-
(1999)
Phys. Rev. E
, vol.59
, pp. 5468
-
-
Károlyi, G.1
Péntek, A.2
Toroczkai, Z.3
Tél, T.4
Grebogi, C.5
-
16
-
-
2942669935
-
-
See Chs. 12 and 13 of [7] and references therein
-
See Chs. 12 and 13 of [7] and references therein.
-
-
-
-
19
-
-
26144440148
-
-
S. Lovejoy, M. Lilley, N. Desaulnies-Soucy, and D. Schertzer, Phys. Rev. E 68, 025301(R) (2003).
-
(2003)
Phys. Rev. E
, vol.68
-
-
Lovejoy, S.1
Lilley, M.2
Desaulnies-Soucy, N.3
Schertzer, D.4
-
20
-
-
2942672112
-
-
See http://w3.gkss.de/baltex/ for information on the BALTEX project.
-
-
-
-
21
-
-
2942695751
-
-
note
-
The literature on fractal rain distributions is extensive; for a bibliography see [18].
-
-
-
-
24
-
-
0037133192
-
-
K. Christensen, L. Danon, T. Scanlon, and P. Bak, Proc. Nat. Acad. Sci. 99, suppl. 1, 2509 (2002).
-
(2002)
Proc. Nat. Acad. Sci.
, vol.99
, Issue.SUPPL. 1
, pp. 2509
-
-
Christensen, K.1
Danon, L.2
Scanlon, T.3
Bak, P.4
-
27
-
-
0034349202
-
-
R. Dickman, M. A. Muñoz, A. Vespignani, and S. Zepperi, Braz. J. Phys. 30, (2000) 27.
-
(2000)
Braz. J. Phys.
, vol.30
, pp. 27
-
-
Dickman, R.1
Muñoz, M.A.2
Vespignani, A.3
Zepperi, S.4
-
30
-
-
0036936303
-
-
R. F. S. Andrade, S. T. R. Pinho, S. C. Fraga, and A. P. M. Tanajur, Physica 314A, 405 (2002).
-
(2002)
Physica
, vol.314 A
, pp. 405
-
-
Andrade, R.F.S.1
Pinho, S.T.R.2
Fraga, S.C.3
Tanajur, A.P.M.4
-
31
-
-
2942695749
-
-
note
-
The sandpile model studied in [28] involves rather specific assumptions regarding stability, breakup and coalescence of raindrops. Moreover, it yields non-power-law distributions for rain event sizes and interevent durations. It does however yield a power-law distribution for "internal avalanches" (those not leading to rainfall) with an exponent τ ≃ 4/3, rather close to that found by Peters et al.
-
-
-
-
32
-
-
0003672584
-
-
A. MicKane et al., Eds. (Plenum, New York)
-
G. Grinstein, in Scale Invariance, Interfaces and Nonequilibrium Dynamics, NATO Advanced Study Institute, Series B: Physics, vol. 344, A. MicKane et al., Eds. (Plenum, New York, 1995).
-
(1995)
Scale Invariance, Interfaces and Nonequilibrium Dynamics, NATO Advanced Study Institute, Series B: Physics
, vol.344
-
-
Grinstein, G.1
-
34
-
-
4243736448
-
-
A. Vespignani and S. Zapperi, Phys. Rev. Lett. 78, 4793 (1997); Phys. Rev. E 57, 6345 (1998).
-
(1998)
Phys. Rev. E
, vol.57
, pp. 6345
-
-
-
37
-
-
85040901747
-
-
Cambridge University Press, Cambridge
-
J. M. Ottino, The Kinematics of Mixing: Stretching, Chaos, and Transport, (Cambridge University Press, Cambridge, 1989).
-
(1989)
The Kinematics of Mixing: Stretching, Chaos, and Transport
-
-
Ottino, J.M.1
-
39
-
-
2942647950
-
-
note
-
The incompressibility condition should be well satisfied since the velocities of interest are small compared to the speed of sound.
-
-
-
-
44
-
-
2942661364
-
-
note
-
Further details and extensive references on systems of point vortices may be found in Ref. [14].
-
-
-
-
45
-
-
0019077452
-
-
H. Aref and E. D. Siggia, J. Fluid Mech. 100, 705 (1980); E. D. Siggia and H. Aref, Phys. Fluids 24, 171 (1981).
-
(1980)
J. Fluid Mech.
, vol.100
, pp. 705
-
-
Aref, H.1
Siggia, E.D.2
-
46
-
-
0001099620
-
-
H. Aref and E. D. Siggia, J. Fluid Mech. 100, 705 (1980); E. D. Siggia and H. Aref, Phys. Fluids 24, 171 (1981).
-
(1981)
Phys. Fluids
, vol.24
, pp. 171
-
-
Siggia, E.D.1
Aref, H.2
-
48
-
-
36849114603
-
-
1417
-
R. H. Kraichnan and D. Montgomery, Rep. Prog. Phys. 43, 35 (1980); R. H. Kraichnan, Phys. Fluids 10, 1417 (1967).
-
(1967)
Phys. Fluids
, vol.10
-
-
Kraichnan, R.H.1
-
50
-
-
2942691442
-
-
note
-
It would be of interest to study other initial configurations, for example, one approximating a vortex sheet, which should then suffer a Kelvin-Helmholtz instability. The periodic boundaries might also be removed, allowing the vortex system to attain its natural, unconstrained size.
-
-
-
-
53
-
-
0038516810
-
-
Scaling properties of solar magnetic bursts have also been studied in the SOC context. See D. Hughes et al., Phys. Rev. Lett 90, 131101 (2003).
-
(2003)
Phys. Rev. Lett
, vol.90
, pp. 131101
-
-
Hughes, D.1
|