-
1
-
-
0010793893
-
Supersymmetric strings and color confinement
-
Ademollo, M., et al., "Supersymmetric strings and color confinement," Phys. Lett. 62B, 105-110 (1976).
-
(1976)
Phys. Lett.
, vol.62 B
, pp. 105-110
-
-
Ademollo, M.1
-
2
-
-
0346183014
-
Dual string models with non-Abelian color and flavor symmetries
-
Ademollo, M., et al., "Dual string models with non-Abelian color and flavor symmetries," Nucl. Phys. B 114, 297-316 (1976).
-
(1976)
Nucl. Phys. B
, vol.114
, pp. 297-316
-
-
Ademollo, M.1
-
4
-
-
84967546070
-
Two approaches to supermanifolds
-
Batchelor, M., "Two approaches to supermanifolds," Trans. Am. Math. Soc. 253, 329-338 (1979).
-
(1979)
Trans. Am. Math. Soc.
, vol.253
, pp. 329-338
-
-
Batchelor, M.1
-
5
-
-
84909801273
-
Graded manifolds and supermanifolds
-
Mathematical Aspects of Superspace, NATO ASI Series, Reidel Publishing, Dordrecht
-
Batchelor, M., "Graded manifolds and supermanifolds," Mathematical Aspects of Superspace, NATO ASI Series, Math and Phys. Sciences Vol. 132 (Reidel Publishing, Dordrecht, 1983), pp. 91-133.
-
(1983)
Math and Phys. Sciences
, vol.132
, pp. 91-133
-
-
Batchelor, M.1
-
6
-
-
0010882054
-
Infinite conformal symmetry in two-dimensional quantum field theory
-
Belavin, A., Polyakov, A., and Zamolodchikov, A., "Infinite conformal symmetry in two-dimensional quantum field theory," Nucl. Phys. B 241, 333-380 (1984).
-
(1984)
Nucl. Phys. B
, vol.241
, pp. 333-380
-
-
Belavin, A.1
Polyakov, A.2
Zamolodchikov, A.3
-
8
-
-
38249037134
-
Representations of N=3 superconformal algebra
-
Chang, D., and Kumar, A., "Representations of N=3 superconformal algebra," Phys. Lett. B 193, 181-186 (1987).
-
(1987)
Phys. Lett. B
, vol.193
, pp. 181-186
-
-
Chang, D.1
Kumar, A.2
-
9
-
-
0002382940
-
N=2 super-Riemann surfaces
-
Cohn, J., "N=2 super-Riemann surfaces," Nucl. Phys. B 284, 349-364 (1987).
-
(1987)
Nucl. Phys. B
, vol.284
, pp. 349-364
-
-
Cohn, J.1
-
10
-
-
0004171988
-
-
Cambridge University Press, Cambridge
-
DeWitt, B., Supermanifolds (Cambridge University Press, Cambridge, 1992).
-
(1992)
Supermanifolds
-
-
DeWitt, B.1
-
11
-
-
0001231468
-
Singular vectors of the N=2 superconformal algebra
-
Dörrzapf, M., "Singular vectors of the N=2 superconformal algebra," Int. J. Mod. Phys. A 10, 2143-2180 (1995).
-
(1995)
Int. J. Mod. Phys. A
, vol.10
, pp. 2143-2180
-
-
Dörrzapf, M.1
-
12
-
-
0038931182
-
The definition of neveu-schwarz superconformal fields and superconformal transformations
-
Dörrzapf, M., "The definition of Neveu-Schwarz superconformal fields and superconformal transformations," Rev. Math. Phys. 11, 137-169 (1999).
-
(1999)
Rev. Math. Phys.
, vol.11
, pp. 137-169
-
-
Dörrzapf, M.1
-
13
-
-
0003611477
-
-
Springer-Verlag, Berlin
-
Di Francesco, P., Mathieu, P., and Senechal, D., Conformal Field Theory (Springer-Verlag, Berlin, 1996).
-
(1996)
Conformal Field Theory
-
-
Di Francesco, P.1
Mathieu, P.2
Senechal, D.3
-
15
-
-
0039536065
-
The geometry of super-Riemann surfaces
-
Giddings, S., and Nelson, P., "The geometry of super-Riemann surfaces," Commun. Math. Phys. 116, 607-634 (1988).
-
(1988)
Commun. Math. Phys.
, vol.116
, pp. 607-634
-
-
Giddings, S.1
Nelson, P.2
-
17
-
-
0000173477
-
Meromorphic conformal field theory
-
Infinite-dimensional Lie algebras and groups (World Scientific, Singapore)
-
Goddard, P., "Meromorphic conformal field theory," Adv. Ser. Math. Phys. 7, Infinite-dimensional Lie algebras and groups (World Scientific, Singapore, 1988), pp. 556-587.
-
(1988)
Adv. Ser. Math. Phys.
, vol.7
, pp. 556-587
-
-
Goddard, P.1
-
19
-
-
0347932494
-
Super-beltrami differentials
-
Hodgkin, L., "Super-Beltrami differentials," Class. Quantum Grav. 6, 1725-1738 (1989).
-
(1989)
Class. Quantum Grav.
, vol.6
, pp. 1725-1738
-
-
Hodgkin, L.1
-
20
-
-
49449126179
-
Lie superalgebras
-
Kac, V., "Lie superalgebras," Adv. Math. 26, 8-96 (1977).
-
(1977)
Adv. Math.
, vol.26
, pp. 8-96
-
-
Kac, V.1
-
21
-
-
0003362879
-
-
Proceedings, Strings
-
Kac, V., and van de Leur, J., "On classification of superconformal algebras," Proceedings, Strings, 1988.
-
(1988)
On Classification of Superconformal Algebras
-
-
Kac, V.1
Van de Leur, J.2
-
22
-
-
0003356241
-
Vertex algebras for beginners
-
Kac, V., "Vertex Algebras for Beginners," AMS University Lecture Series (1997), Vol. 10, pp. 178-185.
-
(1997)
AMS University Lecture Series
, vol.10
, pp. 178-185
-
-
Kac, V.1
-
23
-
-
0000834553
-
Graded manifolds, graded lie theory, and prequantization
-
Differential Geometry in Mathematical Physics
-
Kostant, B., "Graded Manifolds, Graded Lie Theory, and Prequantization," Differential Geometry in Mathematical Physics, Lecture Notes in Mathematics, Vol. 570.
-
Lecture Notes in Mathematics
, vol.570
-
-
Kostant, B.1
-
24
-
-
84951367352
-
Introduction to the theory of supermanifolds
-
Leites, D., "Introduction to the theory of supermanifolds," Russ. Math. Surveys 35:1, 1-64 (1980).
-
(1980)
Russ. Math. Surveys
, vol.35
, Issue.1
, pp. 1-64
-
-
Leites, D.1
-
26
-
-
36749111350
-
A global theory of supermanifolds
-
Rogers, A., "A global theory of supermanifolds," J. Math. Phys. 21, 1352-1365 (1980).
-
(1980)
J. Math. Phys.
, vol.21
, pp. 1352-1365
-
-
Rogers, A.1
-
27
-
-
1842662435
-
Consistent superspace integration
-
Rogers, A., "Consistent superspace integration," J. Math. Phys. 26, 385-392 (1985).
-
(1985)
J. Math. Phys.
, vol.26
, pp. 385-392
-
-
Rogers, A.1
-
28
-
-
0001138262
-
Graded manifolds, supermanifolds and infinite-dimensional grassmann algebras
-
Rogers, A., "Graded manifolds, supermanifolds and infinite-dimensional grassmann algebras," Commun. Math. Phys. 105, 375-384 (1986).
-
(1986)
Commun. Math. Phys.
, vol.105
, pp. 375-384
-
-
Rogers, A.1
-
29
-
-
0010920983
-
O(N)-extended superconformal field theory in superspace
-
Schoutens, K., "O(N)-extended superconformal field theory in superspace," Nucl. Phys. B 295, 634-652 (1988).
-
(1988)
Nucl. Phys. B
, vol.295
, pp. 634-652
-
-
Schoutens, K.1
-
30
-
-
0000889575
-
Null vectors of the superconfomal algebra: The Ramond sector
-
Watts, G., "Null vectors of the superconfomal algebra: The Ramond sector," Nucl. Phys. B 407, 213-236 (1993).
-
(1993)
Nucl. Phys. B
, vol.407
, pp. 213-236
-
-
Watts, G.1
-
32
-
-
2942689378
-
-
note
-
Assume otherwise, so that kk′ = 1= k′k, and kk″- 1 = k″k. Subtracting and factorizing gives (k′- k″)k=0 = k(k′ - k″). Using either inverse on these equations shows k′ - k″=0.
-
-
-
-
33
-
-
2942656961
-
-
note
-
p(A)p(B)BA.
-
-
-
-
34
-
-
2942644070
-
-
note
-
123=1 and ε is antisymmetric in all its indices. Summation convention is used over repeated indices.
-
-
-
-
35
-
-
2942661479
-
-
note
-
i.
-
-
-
-
36
-
-
2942670036
-
-
note
-
-(1/2))|Φ〉, giving the operator associated with a state.
-
-
-
-
37
-
-
2942691563
-
-
The author thanks M. Dörrzapf for checking these relations
-
The author thanks M. Dörrzapf for checking these relations.
-
-
-
-
38
-
-
2942665630
-
-
note
-
More precisely, these come from an ungraded involution on the algebra. On any representation of the algebra that admits a Hermitian contragredient form, this involution then gives the adjoint with respect to that form.
-
-
-
|