-
1
-
-
0002449782
-
Minimum Action Solutions of Some Vector Field Equations
-
Brezis, H. and Lieb, E., Minimum Action Solutions of Some Vector Field Equations, Comm. Math. Phys., 96, (1984), No. 1, 97-113.
-
(1984)
Comm. Math. Phys.
, vol.96
, Issue.1
, pp. 97-113
-
-
Brezis, H.1
Lieb, E.2
-
2
-
-
0000090159
-
Orbital Stability of Standing waves for Some Nonlinear Schrodinger Equations
-
Cazenave. T. and Lions, P.L., Orbital Stability of Standing waves for Some Nonlinear Schrodinger Equations, Comm. Math. Phys., 85, 1982, 549-561.
-
(1982)
Comm. Math. Phys.
, vol.85
, pp. 549-561
-
-
Cazenave, T.1
Lions, P.L.2
-
3
-
-
0035452006
-
Orbital Stability of Solitary Waves for a Shallow Water Equation
-
Constantin, A. and Molinet, L., Orbital Stability of Solitary Waves for a Shallow Water Equation, Physica D, 157 (2001) 75-89.
-
(2001)
Physica D
, vol.157
, pp. 75-89
-
-
Constantin, A.1
Molinet, L.2
-
4
-
-
0034372667
-
Stability of Peakons
-
Constantin, A. and Strauss,W., Stability of Peakons, Comm. Pure and Applied Math., vol. LIII (2000), 603-610.
-
(2000)
Comm. Pure and Applied Math.
, vol.53
, pp. 603-610
-
-
Constantin, A.1
Strauss, W.2
-
5
-
-
0000380413
-
Stability of the Camassa-Holm Solitons
-
Constantin, A. and Strauss,W., Stability of the Camassa-Holm Solitons, J. Nonlinear Science, vol 12, 415-422 (2002).
-
(2002)
J. Nonlinear Science
, vol.12
, pp. 415-422
-
-
Constantin, A.1
Strauss, W.2
-
6
-
-
0003498504
-
-
Academic Press
-
Gradshteyn, I. and Ryzhik, I., Tables of Integrals, Series and Products, 4th edition, Academic Press, 1965.
-
(1965)
Tables of Integrals, Series and Products, 4th Edition
-
-
Gradshteyn, I.1
Ryzhik, I.2
-
7
-
-
0000468151
-
Stability theory of solitary waves in the presence of symmetry I
-
Grillakis, M., Shatah, J. and Strauss, W., Stability theory of solitary waves in the presence of symmetry I., J. Funct. Anal., 74, No.1, 160-197 (1987).
-
(1987)
J. Funct. Anal.
, vol.74
, Issue.1
, pp. 160-197
-
-
Grillakis, M.1
Shatah, J.2
Strauss, W.3
-
8
-
-
85030719142
-
The Concentration-Compactness Principle in the Calculus of Variations
-
Lions, P.L., The Concentration-Compactness Principle in the Calculus of Variations, Ann. Inst. H. Poincaré, Anal. non Linéaire, sec A, 1(1984), Part I 109-145, Part II 223-283.
-
(1984)
Ann. Inst. H. Poincaré, Anal. Non Linéaire, Sec A
, vol.1
, Issue.1 PART
, pp. 109-145
-
-
Lions, P.L.1
-
9
-
-
85030707196
-
-
Lions, P.L., The Concentration-Compactness Principle in the Calculus of Variations, Ann. Inst. H. Poincaré, Anal. non Linéaire, sec A, 1(1984), Part I 109-145, Part II 223-283.
-
Ann. Inst. H. Poincaré, Anal. Non Linéaire, Sec A
, Issue.2 PART
, pp. 223-283
-
-
-
10
-
-
0035590983
-
Peakons and their Bifurcation in a Generalized Camassa-Holm Equation
-
Liu, Z. and Qian, T., Peakons and their Bifurcation in a Generalized Camassa-Holm Equation, Intern. J. of Bifurcation and Chaos, Vol. 11, No. 3 (2001), 781-792.
-
(2001)
Intern. J. of Bifurcation and Chaos
, vol.11
, Issue.3
, pp. 781-792
-
-
Liu, Z.1
Qian, T.2
-
11
-
-
0034425920
-
Nonlocal variational problems arising in long wave propagation
-
Lopes, O., Nonlocal variational problems arising in long wave propagation, Control, Optimisation and Calculus of Variations (COCV) (http://www.emath.fr/cocv) vol. 5 (2000), 501-528
-
(2000)
Control, Optimisation and Calculus of Variations (COCV)
, vol.5
, pp. 501-528
-
-
Lopes, O.1
|