-
1
-
-
0000134803
-
-
C.H. Back, D. Weller, J. Heidmann, D. Mauri, D. Guarisco, E.L. Garwin, and H.C. Siegmann, Phys. Rev. Lett. 81, 3251 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 3251
-
-
Back, C.H.1
Weller, D.2
Heidmann, J.3
Mauri, D.4
Guarisco, D.5
Garwin, E.L.6
Siegmann, H.C.7
-
2
-
-
0032538518
-
-
C. Stamm, F. Marty, A. Vaterlaus, V. Weich, S. Egger, U. Maier, U. Ramsperger, H. Fuhrmann, and D. Pescia, Science 282, 449 (1998).
-
(1998)
Science
, vol.282
, pp. 449
-
-
Stamm, C.1
Marty, F.2
Vaterlaus, A.3
Weich, V.4
Egger, S.5
Maier, U.6
Ramsperger, U.7
Fuhrmann, H.8
Pescia, D.9
-
3
-
-
15844390043
-
-
M. Hehn, K. Ounadjela, J.-P. Bucher, F. Rousseaux, D. Decanini, B. Bartenlian, and C. Chappert, Science 272, 1782 (1996).
-
(1996)
Science
, vol.272
, pp. 1782
-
-
Hehn, M.1
Ounadjela, K.2
Bucher, J.-P.3
Rousseaux, F.4
Decanini, D.5
Bartenlian, B.6
Chappert, C.7
-
4
-
-
0000419715
-
-
R.H. Koch, J.G. Deak, D.W. Abraham, P.L. Trouilloud, R.A. Altman, Yu Lu, W.J. Gallagher, R.E. Scheuerlein, K.P. Poche, and S.S.P. Parkin, Phys. Rev. Lett. 81, 4512 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 4512
-
-
Koch, R.H.1
Deak, J.G.2
Abraham, D.W.3
Trouilloud, P.L.4
Altman, R.A.5
Lu, Y.6
Gallagher, W.J.7
Scheuerlein, R.E.8
Poche, K.P.9
Parkin, S.S.P.10
-
5
-
-
0036682394
-
-
Th. Gerrits, H.A.M. van den Berg, J. Hohlfeld, L. Bar, and Th. Rasing, Nature (London) 418, 509 (2002).
-
(2002)
Nature (London)
, vol.418
, pp. 509
-
-
Gerrits, Th.1
Van den Berg, H.A.M.2
Hohlfeld, J.3
Bar, L.4
Rasing, Th.5
-
6
-
-
0035134175
-
-
B.C. Choi, M. Belov, W.K. Hiebert, G. Ballentine, and M.R. Freeman, Phys. Rev. Lett. 86, 728 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 728
-
-
Choi, B.C.1
Belov, M.2
Hiebert, W.K.3
Ballentine, G.4
Freeman, M.R.5
-
7
-
-
0033762297
-
-
Y. Acremann et al., Science 290, 492 (2000).
-
(2000)
Science
, vol.290
, pp. 492
-
-
Acremann, Y.1
-
9
-
-
0035476557
-
-
B.C. Choi, G.E. Ballentine, M. Belov, and M.R. Freeman, Phys. Rev. B 64, 144418 (2001).
-
(2001)
Phys. Rev. B
, vol.64
, pp. 144418
-
-
Choi, B.C.1
Ballentine, G.E.2
Belov, M.3
Freeman, M.R.4
-
10
-
-
0000982057
-
-
R.D. Gomez, T.V. Luu, A.O. Pak, K.J. Kirk, and J.N. Chapman, J. Appl. Phys. 85, 6163 (1999).
-
(1999)
J. Appl. Phys.
, vol.85
, pp. 6163
-
-
Gomez, R.D.1
Luu, T.V.2
Pak, A.O.3
Kirk, K.J.4
Chapman, J.N.5
-
11
-
-
2942691925
-
-
note
-
t=0.8-1.2 kA/m. This strongly indicates the sensible dependence of the magnetization dynamics on the effective bias fields (Ref. 6).
-
-
-
-
12
-
-
2942648470
-
-
note
-
We note that the sample magnetization experiences a gradient in the switching field during the reversal process. This is because the length of the elements is sufficiently large compared to the width of the transmission line, and the magnitude of the pulsed field is somewhat different at the edge and center of the element. The spatial variation of the switching field across the sample will affect the magnetization dynamics, and is incorporated in the simulation.
-
-
-
-
13
-
-
2942644438
-
-
note
-
In vectorially resolved magnetic imaging by adapting the optical bridge technique to use quadrant detectors, there is always a mixing of in-plane and polar Kerr signals when the beam scans off the edge of a specimen. This is because the balance which suppresses the polar contribution is upset if the entire focus spot does not land on the magnetic material. The mixing has been incorporated in the simulation by assuming a pillbox (flat-top) shape for the focused intensity profile at the specimen.
-
-
-
|