-
3
-
-
0023416451
-
Projected gradient methods for linearly constrained problems
-
Calamai P.H., Moré J.J. Projected gradient methods for linearly constrained problems. Mathematical Programming. 39:1987;93-116.
-
(1987)
Mathematical Programming
, vol.39
, pp. 93-116
-
-
Calamai, P.H.1
Moré, J.J.2
-
4
-
-
0002036820
-
Traffic equilibrium and variational inequalities
-
Dafermos S. Traffic equilibrium and variational inequalities. Transportation Science. 14:1980;42-54.
-
(1980)
Transportation Science
, vol.14
, pp. 42-54
-
-
Dafermos, S.1
-
5
-
-
0001918140
-
On the basic theorem of complementarity
-
Eaves B.C. On the basic theorem of complementarity. Mathematical Programming. 1:1971;68-75.
-
(1971)
Mathematical Programming
, vol.1
, pp. 68-75
-
-
Eaves, B.C.1
-
6
-
-
0028725307
-
Some saddle-function splitting methods for convex programming
-
Eckstein J. Some saddle-function splitting methods for convex programming. Optimization Methods and Software. 4:1994;75-83.
-
(1994)
Optimization Methods and Software
, vol.4
, pp. 75-83
-
-
Eckstein, J.1
-
8
-
-
0022717559
-
A relaxed projection method for variational inequalities
-
Fukushima M. A relaxed projection method for variational inequalities. Mathematical Programming. 35:1986;58-70.
-
(1986)
Mathematical Programming
, vol.35
, pp. 58-70
-
-
Fukushima, M.1
-
9
-
-
0002211517
-
A dual algorithm for the solution of nonlinear variational problems via finite element approximations
-
Gabay D., Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximations. Computers and Mathematics with Applications. 2:1976;17-40.
-
(1976)
Computers and Mathematics with Applications
, vol.2
, pp. 17-40
-
-
Gabay, D.1
Mercier, B.2
-
12
-
-
0001546137
-
A damped-Newton method for the linear complementarity problem
-
Harker P.T., Pang J.S. A damped-Newton method for the linear complementarity problem. Lectures in Applied Mathematics. 26:1990;265-284.
-
(1990)
Lectures in Applied Mathematics
, vol.26
, pp. 265-284
-
-
Harker, P.T.1
Pang, J.S.2
-
13
-
-
0030819777
-
A class of new methods for monotone variational inequalities
-
He B.S. A class of new methods for monotone variational inequalities. Applied Mathematics and Optimization. 35:1997;69-76.
-
(1997)
Applied Mathematics and Optimization
, vol.35
, pp. 69-76
-
-
He, B.S.1
-
14
-
-
24944576683
-
Inexact implicit methods for monotone general variational inequalities
-
He B.S. Inexact implicit methods for monotone general variational inequalities. Mathematical Programming. 86:1999;199-217.
-
(1999)
Mathematical Programming
, vol.86
, pp. 199-217
-
-
He, B.S.1
-
15
-
-
0032178315
-
Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities
-
He B.S., Yang H. Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities. Operations Research Letters. 23:1998;151-161.
-
(1998)
Operations Research Letters
, vol.23
, pp. 151-161
-
-
He, B.S.1
Yang, H.2
-
17
-
-
0000915170
-
Application of Khobotov's algorithm to variational inequalities and network equilibrium problems
-
Marcotte P. Application of Khobotov's algorithm to variational inequalities and network equilibrium problems. Information Systems and Operational Research. 29:1984;258-270.
-
(1984)
Information Systems and Operational Research
, vol.29
, pp. 258-270
-
-
Marcotte, P.1
-
20
-
-
0000860428
-
A hybrid Newton method for solving the variational inequality problem via the D-gap function
-
Peng J.M., Fukushima M. A hybrid Newton method for solving the variational inequality problem via the D-gap function. Mathematical Programming. 86:1999;367-386.
-
(1999)
Mathematical Programming
, vol.86
, pp. 367-386
-
-
Peng, J.M.1
Fukushima, M.2
-
21
-
-
0027543289
-
A globally convergent Newton method for solving strongly monotone variational inequalities
-
Taji K., Fukushima M., Ibaraki T. A globally convergent Newton method for solving strongly monotone variational inequalities. Mathematical Programming. 58:1993;369-383.
-
(1993)
Mathematical Programming
, vol.58
, pp. 369-383
-
-
Taji, K.1
Fukushima, M.2
Ibaraki, T.3
-
22
-
-
0342955014
-
Solving a class of asymmetric variational inequalities by a new alternation direction method
-
Wang S., Yang H., He B.S. Solving a class of asymmetric variational inequalities by a new alternation direction method. Computers and Mathematics with Applications. 40:2000;927-937.
-
(2000)
Computers and Mathematics with Applications
, vol.40
, pp. 927-937
-
-
Wang, S.1
Yang, H.2
He, B.S.3
|