메뉴 건너뛰기




Volumn 22, Issue 3, 2003, Pages 443-461

Analytical stress solutions of a closed deformation path with stretching and shearing using the hypoelastic formulations

Author keywords

Corotational coordinate frame; Hypoelasticity; Objective stress rate; Spin tensor

Indexed keywords

DEFORMATION; ELASTICITY; INTEGRAL EQUATIONS; PLASTICITY; SHEAR STRESS; STRAIN; TENSORS;

EID: 2942604956     PISSN: 09977538     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0997-7538(03)00031-7     Document Type: Article
Times cited : (21)

References (20)
  • 2
    • 0002179101 scopus 로고
    • Relation between hypo-elasticity and elasticity
    • Bernstein B. Relation between hypo-elasticity and elasticity. Trans. Soc. Rheology. 4:1960;23-28.
    • (1960) Trans. Soc. Rheology , vol.4 , pp. 23-28
    • Bernstein, B.1
  • 4
    • 0018694759 scopus 로고
    • On the analysis of rotation and stress rate in deforming bodies
    • Dienes J.K. On the analysis of rotation and stress rate in deforming bodies. Acta Mech. 32:1979;217-232.
    • (1979) Acta Mech. , vol.32 , pp. 217-232
    • Dienes, J.K.1
  • 5
    • 0023218643 scopus 로고
    • Studies of finite element procedures - Stress solution of a closed elastic strain path with stretching and shearing using the updated Lagrangian Jaumann formulation
    • Kojić M., Bathe K.J. Studies of finite element procedures - stress solution of a closed elastic strain path with stretching and shearing using the updated Lagrangian Jaumann formulation. Comput. Structures. 26:1987;175-179.
    • (1987) Comput. Structures , vol.26 , pp. 175-179
    • Kojić, M.1    Bathe, K.J.2
  • 6
    • 0015249898 scopus 로고
    • Einige Bemerkungen zu einer allgemeinen Klasse von Stoffgesetzen für große elasto-plastische Formänderungen
    • Lehmann Th. Einige Bemerkungen zu einer allgemeinen Klasse von Stoffgesetzen für große elasto-plastische Formänderungen. Ingenieur-Archiv. 41:1972;297-310.
    • (1972) Ingenieur-archiv. , vol.41 , pp. 297-310
    • Lehmann, Th.1
  • 8
    • 0025724758 scopus 로고
    • The conjugacy between Cauchy stress and logarithm of the left stretch tensor
    • Lehmann Th., Guo Z.H., Liang H.Y. The conjugacy between Cauchy stress and logarithm of the left stretch tensor. Eur. J. Mech. A Solids. 10:1991;395-404.
    • (1991) Eur. J. Mech. A Solids , vol.10 , pp. 395-404
    • Lehmann, Th.1    Guo, Z.H.2    Liang, H.Y.3
  • 9
    • 0037202505 scopus 로고    scopus 로고
    • Numerical study of consistency of rate constitutive equations with elasticity at finite deformation
    • Lin R.C. Numerical study of consistency of rate constitutive equations with elasticity at finite deformation. Int. J. Numer. Methods Engrg. 55:2002;1053-1077.
    • (2002) Int. J. Numer. Methods Engrg. , vol.55 , pp. 1053-1077
    • Lin, R.C.1
  • 11
    • 0025399187 scopus 로고
    • Formulation of implicit finite element methods for multiplicative finite deformation plasticity
    • Moran B., Ortiz M., Shih C.F. Formulation of implicit finite element methods for multiplicative finite deformation plasticity. Int. J. Numer. Methods Engrg. 29:1990;483-514.
    • (1990) Int. J. Numer. Methods Engrg. , vol.29 , pp. 483-514
    • Moran, B.1    Ortiz, M.2    Shih, C.F.3
  • 12
    • 0020831051 scopus 로고
    • Numerical integration of rate constitutive equations in finite deformation analysis
    • Pinsky P.M., Ortiz M., Pister K.S. Numerical integration of rate constitutive equations in finite deformation analysis. Comput. Methods Appl. Mech. Engrg. 40:1983;137-158.
    • (1983) Comput. Methods Appl. Mech. Engrg. , vol.40 , pp. 137-158
    • Pinsky, P.M.1    Ortiz, M.2    Pister, K.S.3
  • 13
    • 0029270685 scopus 로고
    • Eulerian strain-rate as a rate of logarithmic strain
    • Reinhardt W.D., Dubey R.N. Eulerian strain-rate as a rate of logarithmic strain. Mech. Res. Comm. 22:1995;165-170.
    • (1995) Mech. Res. Comm. , vol.22 , pp. 165-170
    • Reinhardt, W.D.1    Dubey, R.N.2
  • 14
    • 0022076781 scopus 로고
    • A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations
    • Simo J.C., Ortiz M. A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations. Comput. Methods Appl. Mech. Engrg. 49:1985;221-245.
    • (1985) Comput. Methods Appl. Mech. Engrg. , vol.49 , pp. 221-245
    • Simo, J.C.1    Ortiz, M.2
  • 15
    • 0021515714 scopus 로고
    • Remarks on rate constitutive equations for finite deformation problems: Computational implications
    • Simo J.C., Pister K.S. Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput. Methods Appl. Mech. Engrg. 46:1984;201-215.
    • (1984) Comput. Methods Appl. Mech. Engrg. , vol.46 , pp. 201-215
    • Simo, J.C.1    Pister, K.S.2
  • 16
    • 0031352140 scopus 로고    scopus 로고
    • Logarithmic strain, logarithmic spin and logarithmic rate
    • Xiao H., Bruhns O.T., Meyers A. Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech. 124:1997;89-105.
    • (1997) Acta Mech. , vol.124 , pp. 89-105
    • Xiao, H.1    Bruhns, O.T.2    Meyers, A.3
  • 17
    • 0031108422 scopus 로고    scopus 로고
    • Hypo-ealsticity model based upon the logarithmic stress rate
    • Xiao H., Bruhns O.T., Meyers A. Hypo-ealsticity model based upon the logarithmic stress rate. J. Elasticity. 47:1997;51-68.
    • (1997) J. Elasticity , vol.47 , pp. 51-68
    • Xiao, H.1    Bruhns, O.T.2    Meyers, A.3
  • 18
    • 0032182760 scopus 로고    scopus 로고
    • On objective corotational rates and their defining spin tensors
    • Xiao H., Bruhns O.T., Meyers A. On objective corotational rates and their defining spin tensors. Int. J. Solids Structures. 35:1998;4001-4014.
    • (1998) Int. J. Solids Structures , vol.35 , pp. 4001-4014
    • Xiao, H.1    Bruhns, O.T.2    Meyers, A.3
  • 20
    • 0032606297 scopus 로고    scopus 로고
    • Existence and uniqueness of the integrable-exactly hypoelastic equation τ̊*=λ(trd)I+2μd and its significance to finite inelasticity
    • Xiao H., Bruhns O.T., Meyers A. Existence and uniqueness of the integrable-exactly hypoelastic equation τ̊*=λ(trd)I+2μd and its significance to finite inelasticity. Acta Mech. 138:1999;31-50.
    • (1999) Acta Mech. , vol.138 , pp. 31-50
    • Xiao, H.1    Bruhns, O.T.2    Meyers, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.