-
1
-
-
0000148713
-
Chaotic trajectories in the standard map: The concept of anti-integrability
-
Aubry, S., and Abramovici, G., 1990, Chaotic trajectories in the standard map: the concept of anti-integrability. Physica D, 43, 199-219.
-
(1990)
Physica D
, vol.43
, pp. 199-219
-
-
Aubry, S.1
Abramovici, G.2
-
2
-
-
48749143267
-
The discrete Frenkel-Kontorova model and its extensions. I. Exact results for the ground-states
-
Aubry, S., and Le Daeron, P. Y., 1983, The discrete Frenkel-Kontorova model and its extensions. I. Exact results for the ground-states. Physica D, 8, 381-422.
-
(1983)
Physica D
, vol.8
, pp. 381-422
-
-
Aubry, S.1
Le Daeron, P.Y.2
-
3
-
-
0002946916
-
Equivalence of uniform hyperbolicity for sympleotic twist maps and phonon gap for Frenkel-Kontorova models
-
Aubry, S., MacKay, R. S., and Baesens, C., 1992, Equivalence of uniform hyperbolicity for sympleotic twist maps and phonon gap for Frenkel-Kontorova models. Physica D, 56, 123-134.
-
(1992)
Physica D
, vol.56
, pp. 123-134
-
-
Aubry, S.1
Mackay, R.S.2
Baesens, C.3
-
4
-
-
0037332683
-
An experiment in chaotic scattering using repulsive magnetic forces
-
Blackburn, J. A., and Smith, H. J. T., 2003, An experiment in chaotic scattering using repulsive magnetic forces. Chaos, Solitons and Fractals, 15, 783-795.
-
(2003)
Chaos, Solitons and Fractals
, vol.15
, pp. 783-795
-
-
Blackburn, J.A.1
Smith, H.J.T.2
-
5
-
-
4243192720
-
Route to chaotic scattering
-
Bleher, S., Ott, E., and Grebogi, C., 1989, Route to chaotic scattering. Physical Review Letters, 63, 919-922.
-
(1989)
Physical Review Letters
, vol.63
, pp. 919-922
-
-
Bleher, S.1
Ott, E.2
Grebogi, C.3
-
6
-
-
0010633768
-
Periodic and chaotic trajectories of the second species for the n-centre problem
-
Bolotin, S. V., and MacKay, R. S., 2000, Periodic and chaotic trajectories of the second species for the n-centre problem. Celestial Mechanics and Dynamical Astronomy, 77, 49-75.
-
(2000)
Celestial Mechanics and Dynamical Astronomy
, vol.77
, pp. 49-75
-
-
Bolotin, S.V.1
MacKay, R.S.2
-
7
-
-
0002673989
-
Numerical study of a d-dimensional periodic Lorentz gas with universal properties
-
Bouchaud, J.-P., and Le Doussal, P., 1985, Numerical study of a d-dimensional periodic Lorentz gas with universal properties. Journal of Statistical Physics, 41, 225-248.
-
(1985)
Journal of Statistical Physics
, vol.41
, pp. 225-248
-
-
Bouchaud, J.-P.1
Le Doussal, P.2
-
8
-
-
0002031610
-
Markov partitions for two-dimensional hyperbolic billiards
-
Bunimovich, L. A., Sinai, Ya. G., and Chernov, N. I., 1990, Markov partitions for two-dimensional hyperbolic billiards. Russian Mathematical Surveys, 45, 97-134.
-
(1990)
Russian Mathematical Surveys
, vol.45
, pp. 97-134
-
-
Bunimovich, L.A.1
Sinai, Ya.G.2
Chernov, N.I.3
-
9
-
-
0039157762
-
Variational principle for periodic trajectories of hyperbolic billiards
-
Bunimovich, L. A., 1995, Variational principle for periodic trajectories of hyperbolic billiards. Chaos, 5, 349-355.
-
(1995)
Chaos
, vol.5
, pp. 349-355
-
-
Bunimovich, L.A.1
-
11
-
-
0038157138
-
A new proof of the Sinai's formula for entropy of hyperbolic billiards. Its application to a Lorentz gas and stadium
-
Chernov, N. I., 1991, A new proof of the Sinai's formula for entropy of hyperbolic billiards. Its application to a Lorentz gas and stadium. Functional Analysis and Applications, 25, 204-219.
-
(1991)
Functional Analysis and Applications
, vol.25
, pp. 204-219
-
-
Chernov, N.I.1
-
12
-
-
0041192959
-
Convergence of Hamiltonian systems to billiards
-
Collas, P., Klein, D., and Schwebler, H.-P., 1998, Convergence of Hamiltonian systems to billiards. Chaos, 8, 466-474.
-
(1998)
Chaos
, vol.8
, pp. 466-474
-
-
Collas, P.1
Klein, D.2
Schwebler, H.-P.3
-
13
-
-
0002647193
-
Investigation of the Lorentz gas in terms of periodic orbits
-
Cvitanovic, P., Gaspard, P., and Schreiber, T., 1992, Investigation of the Lorentz gas in terms of periodic orbits. Chaos, 2, 85-90.
-
(1992)
Chaos
, vol.2
, pp. 85-90
-
-
Cvitanovic, P.1
Gaspard, P.2
Schreiber, T.3
-
14
-
-
0041040101
-
The Lyapunov exponent in the Sinai billiard in the small scatterer limit
-
Dahlqvist, P., 1997, The Lyapunov exponent in the Sinai billiard in the small scatterer limit. Nonlinearity, 10, 159-173.
-
(1997)
Nonlinearity
, vol.10
, pp. 159-173
-
-
Dahlqvist, P.1
-
15
-
-
33846039615
-
Potentials on the two-torus for which the Hamiltonian flow is ergodic
-
Donnay, V. J., and Liverani, C., 1991, Potentials on the two-torus for which the Hamiltonian flow is ergodic. Communications in Mathematical Physics, 135, 267-302.
-
(1991)
Communications in Mathematical Physics
, vol.135
, pp. 267-302
-
-
Donnay, V.J.1
Liverani, C.2
-
16
-
-
0001547282
-
Fractal properties of scattering singularities
-
Eckhardt, E., 1987, Fractal properties of scattering singularities. Journal of Physics A, 20, 5971-5979.
-
(1987)
Journal of Physics A
, vol.20
, pp. 5971-5979
-
-
Eckhardt, E.1
-
17
-
-
0041081046
-
Universal behavior of Sinai billiard systems in the small-scatterer limit
-
Friedman, B., Oono, Y., and Kubo, I., 1984, Universal behavior of Sinai billiard systems in the small-scatterer limit. Physical Review Letters, 52, 709-712.
-
(1984)
Physical Review Letters
, vol.52
, pp. 709-712
-
-
Friedman, B.1
Oono, Y.2
Kubo, I.3
-
18
-
-
0001822139
-
Billiards and Bernoulli schemes
-
Gallavotti, G., and Ornstein, D., 1974, Billiards and Bernoulli schemes. Communications in Mathematical Physics, 38, 83-101.
-
(1974)
Communications in Mathematical Physics
, vol.38
, pp. 83-101
-
-
Gallavotti, G.1
Ornstein, D.2
-
19
-
-
0004265476
-
-
Berlin: Springer-Verlag
-
Gallot, S., Hulin, D., and Lafontaine, J., 1993, Riemannian Geometry, 2nd edn (Berlin: Springer-Verlag).
-
(1993)
Riemannian Geometry, 2nd Edn
-
-
Gallot, S.1
Hulin, D.2
Lafontaine, J.3
-
21
-
-
0003578351
-
-
Translations of Mathematical Monographs, (American Mathematical Society)
-
Kozlov, V. V., and Treshchev, D. V., 1991, Billiards. A Genetic Introduction to the Dynamics of Systems with Impacts, Translations of Mathematical Monographs, Vol. 89 (American Mathematical Society).
-
(1991)
Billiards. A Genetic Introduction to the Dynamics of Systems with Impacts
, vol.89
-
-
Kozlov, V.V.1
Treshchev, D.V.2
-
22
-
-
0000346942
-
Abrupt bifurcation to chaotic scattering with discontinuous change in fractal dimension
-
Lai, Y.-C., 1999, Abrupt bifurcation to chaotic scattering with discontinuous change in fractal dimension. Physical Review E, 60, R6283-R6286.
-
(1999)
Physical Review E
, vol.60
-
-
Lai, Y.-C.1
-
23
-
-
0001234820
-
Cantori for symplectic maps near the anti-integrable limit
-
MacKay, R. S., and Meiss, J. D., 1992, Cantori for symplectic maps near the anti-integrable limit. Nonlinearity, 5, 149-160.
-
(1992)
Nonlinearity
, vol.5
, pp. 149-160
-
-
MacKay, R.S.1
Meiss, J.D.2
-
24
-
-
0000919869
-
Variational construction of connecting orbits
-
Mather, J., 1993, Variational construction of connecting orbits. Annales de l'Institut Fourier, 43, 1349-1386.
-
(1993)
Annales de l'Institut Fourier
, vol.43
, pp. 1349-1386
-
-
Mather, J.1
-
25
-
-
0001200214
-
On the foundations of the ergodic hypothesis for a dynamical system of statistical mechanics
-
Sinai, Ya. G., 1963, On the foundations of the ergodic hypothesis for a dynamical system of statistical mechanics. Soviet Mathematics. Doklady, 4, 1818-1822.
-
(1963)
Soviet Mathematics. Doklady
, vol.4
, pp. 1818-1822
-
-
Sinai, Ya.G.1
-
26
-
-
0001764008
-
An estimate from above of the number of periodic orbits for semi-dispersed billiards
-
Stojanov, L., 1989, An estimate from above of the number of periodic orbits for semi-dispersed billiards. Communications in Mathematical Physics, 124, 217-227.
-
(1989)
Communications in Mathematical Physics
, vol.124
, pp. 217-227
-
-
Stojanov, L.1
-
27
-
-
0007679077
-
Elliptic islands appearing in near-ergodic flows
-
Turaev, D., and Rom-Kedar, V., 1998, Elliptic islands appearing in near-ergodic flows. Nonlinearity, 11, 575-600.
-
(1998)
Nonlinearity
, vol.11
, pp. 575-600
-
-
Turaev, D.1
Rom-Kedar, V.2
|