메뉴 건너뛰기




Volumn 35, Issue 1, 2004, Pages 1-12

KMS states for generalized gauge actions on Cuntz-Krieger algebras (an application of the Ruelle-Perron-Frobenius Theorem)

Author keywords

C* algebras; Cuntz Krieger algebras; Gauge action; KMS states; Ruelle Perron Frobenius Theorem

Indexed keywords


EID: 2942560199     PISSN: 16787544     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00574-004-0001-3     Document Type: Article
Times cited : (30)

References (13)
  • 1
    • 0003218287 scopus 로고    scopus 로고
    • Positive transfer operators and decay of correlations
    • World Scientific
    • V. Baladi. Positive transfer operators and decay of correlations. Advanced Series in Nonlinear Dynamics vol. 16, World Scientific, 2000.
    • (2000) Advanced Series in Nonlinear Dynamics , vol.16
    • Baladi, V.1
  • 2
    • 85009367586 scopus 로고
    • Equilibrium states and the ergodic theory of anosov diffeomorphisms
    • Springer-Verlag
    • R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics vol. 470, Springer-Verlag, 1975.
    • (1975) Lecture Notes in Mathematics , vol.470
    • Bowen, R.1
  • 5
    • 0031521477 scopus 로고    scopus 로고
    • Amenability for fell bundles
    • arXiv:funct-an/9604009
    • R. Exel. Amenability for Fell Bundles, J. reine angew. Math., 492: (1997), 41-73, arXiv:funct-an/9604009.
    • (1997) J. Reine Angew. Math. , vol.492 , pp. 41-73
    • Exel, R.1
  • 6
    • 2942539962 scopus 로고    scopus 로고
    • A new look at the crossed-product of a C*-algebra by an endomorphism
    • to appear in
    • R. Exel. A New Look at The Crossed-Product of a C*-algebra by an Endomorphism, to appear in Ergodic Theory Dynam. Systems.
    • Ergodic Theory Dynam. Systems
    • Exel, R.1
  • 7
    • 0037398183 scopus 로고    scopus 로고
    • Crossed-products by finite index endomorphisms and KMS states
    • R. Exel. Crossed-products by finite index endomorphisms and KMS states, J. Funct. Analysis, 199: (2003), 153-188.
    • (2003) J. Funct. Analysis , vol.199 , pp. 153-188
    • Exel, R.1
  • 8
    • 0037208058 scopus 로고    scopus 로고
    • Partial dynamical systems and the KMS condition
    • [arXiv:math.OA/0006169.]
    • R. Exel and M. Laca. Partial dynamical systems and the KMS condition, Commun. Math. Phys., 232: (2003), 223-277, [arXiv:math.OA/0006169.]
    • (2003) Commun. Math. Phys. , vol.232 , pp. 223-277
    • Exel, R.1    Laca, M.2
  • 9
    • 0000492398 scopus 로고
    • Some C*-dynamical systems with a single KMS state
    • D. Olesen and G. K. Pedersen. Some C*-dynamical systems with a single KMS state, Math. Scand. 42: (1978), 111-118.
    • (1978) Math. Scand. , vol.42 , pp. 111-118
    • Olesen, D.1    Pedersen, G.K.2
  • 10
    • 0000575649 scopus 로고    scopus 로고
    • Characterizations of crossed products by partial actions
    • J. Quigg and I. Raeburn. Characterizations of crossed products by partial actions, J. Oper. Theory, 37: (1997), 311-340.
    • (1997) J. Oper. Theory , vol.37 , pp. 311-340
    • Quigg, J.1    Raeburn, I.2
  • 11
    • 2942539289 scopus 로고    scopus 로고
    • AF-equivalence relations and their cocycles
    • July 2-7, Constanza, Romania, [arXiv:math.OA/0111182]
    • J. Renault. AF-equivalence relations and their cocycles, Talk at 4th International Conference on Operator Algebras, July 2-7 2001, Constanza, Romania, [arXiv:math.OA/0111182].
    • (2001) 4th International Conference on Operator Algebras
    • Renault, J.1
  • 12
    • 0000333996 scopus 로고
    • Statistical mechanics of a one-dimensional lattice gas
    • D. Ruelle. Statistical mechanics of a one-dimensional lattice gas, Commun. Math. Phys. 9: (1968), 267-278.
    • (1968) Commun. Math. Phys. , vol.9 , pp. 267-278
    • Ruelle, D.1
  • 13
    • 0141774921 scopus 로고
    • The thermodynamic formalism for expanding maps
    • D. Ruelle. The thermodynamic formalism for expanding maps, Commun. Math. Phys. 125: (1989), 239-262.
    • (1989) Commun. Math. Phys. , vol.125 , pp. 239-262
    • Ruelle, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.