메뉴 건너뛰기




Volumn 19, Issue 8, 2005, Pages 977-996

A sequential bayesian algorithm for surveillance with nonoverlapping cameras

Author keywords

Bayes networks; Data association; Multiple target tracking; Probabilistic learning; Wide area video surveillance

Indexed keywords

BAYES NETWORKS; DATA ASSOCIATION; MULTIPLE-TARGET TRACKING; PROBABILISTIC LEARNING; WIDE-AREA VIDEO SURVEILLANCE;

EID: 29344462197     PISSN: 02180014     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218001405004423     Document Type: Article
Times cited : (32)

References (30)
  • 1
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking
    • S. Arulampalam, S. Maskell, N. Gordon and T. Clapp, A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking, IEEE Trans. Sign. Process. 50(2) (2002) 174-188.
    • (2002) IEEE Trans. Sign. Process , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 3
    • 0035247061 scopus 로고    scopus 로고
    • Tracking and surveillance in wide-area spatial environments using the abstract hidden Markov model
    • H. H. Bui, S. Venkatesh and G. West, Tracking and surveillance in wide-area spatial environments using the abstract hidden Markov model, Int. J. Pattern Recognition and Artificial Intelligence 15(1) (2001) 177-197.
    • (2001) Int. J. Pattern Recognition and Artificial Intelligence , vol.15 , Issue.1 , pp. 177-197
    • Bui, H.H.1    Venkatesh, S.2    West, G.3
  • 4
    • 0033220872 scopus 로고    scopus 로고
    • Tracking human motion in structured environments using a distributed-camera system
    • Q. Cai and J. K. Aggarwal, Tracking human motion in structured environments using a distributed-camera system, IEEE Trans. Patt. Anal. Mach. Intell. 21(11) (1999) 1241-1247.
    • (1999) IEEE Trans. Patt. Anal. Mach. Intell. , vol.21 , Issue.11 , pp. 1241-1247
    • Cai, Q.1    Aggarwal, J.K.2
  • 5
    • 0000097352 scopus 로고    scopus 로고
    • Algorithms for cooperative multisensor surveillance
    • R. Collins, A. Lipton, H. Fujiyoshi and T. Kanade, Algorithms for cooperative multisensor surveillance, in Proc. IEEE 89(10) (2001) 1456-1477.
    • (2001) Proc. IEEE , vol.89 , Issue.10 , pp. 1456-1477
    • Collins, R.1    Lipton, A.2    Fujiyoshi, H.3    Kanade, T.4
  • 6
    • 0027543099 scopus 로고
    • A review of statistical data association techniques for motion correspondence
    • I. J. Cox, A review of statistical data association techniques for motion correspondence, Int. J. Comput Vis. 10(1) (1993) 53-66.
    • (1993) Int. J. Comput Vis. , vol.10 , Issue.1 , pp. 53-66
    • Cox, I.J.1
  • 7
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via em algorithm
    • A. P. Dempster, N. M. Laird and D. B. Rubin, Maximum likelihood from incomplete data via EM algorithm, J. Roy. Statist. Soc. B39(1) (1977) 1-38.
    • (1977) J. Roy. Statist. Soc. , vol.B39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 8
    • 0032313086 scopus 로고    scopus 로고
    • Illumination-invariant color object recognition via compressed chromaticity histograms of color-channel-normalized images
    • M. S. Drew, J. Wei and Z. N. Li, Illumination-invariant color object recognition via compressed chromaticity histograms of color-channel-normalized images, IEEE Int. Conf. Computer Vision (1998), pp. 533-540.
    • (1998) IEEE Int. Conf. Computer Vision , pp. 533-540
    • Drew, M.S.1    Wei, J.2    Li, Z.N.3
  • 12
    • 0037266163 scopus 로고    scopus 로고
    • Improving markov chain monte carlo model search for data mining
    • P. Giudci and R. Castelo, Improving Markov chain Monte Carlo model search for data mining, Mach. Learn. 50 (2001) 127-158.
    • (2001) Mach. Learn , vol.50 , pp. 127-158
    • Giudci, P.1    Castelo, R.2
  • 13
    • 0032131393 scopus 로고    scopus 로고
    • Object identification: A Bayesian analysis with application to traffic surveillance
    • T. Huang and S. Russell, Object identification: A Bayesian analysis with application to traffic surveillance, Artif. Intell. 103(1-2) (1998) 1-17.
    • (1998) Artif. Intell. , vol.103 , Issue.1-2 , pp. 1-17
    • Huang, T.1    Russell, S.2
  • 14
    • 0032136153 scopus 로고    scopus 로고
    • Condensation - Conditional density propagation for visual tracking
    • M. Isard and A. Blake, Condensation - conditional density propagation for visual tracking, Int. J. Comput. Vis. 29(1) (1998) 5-28.
    • (1998) Int. J. Comput. Vis. , vol.29 , Issue.1 , pp. 5-28
    • Isard, M.1    Blake, A.2
  • 15
    • 0031169886 scopus 로고    scopus 로고
    • Model-based tracking of moving object
    • D. S. Jang, G. Y. Kim and H. I. Choi, Model-based tracking of moving object, Patt. Recogn. 30(6) (1997) 999-1008.
    • (1997) Patt. Recogn. , vol.30 , Issue.6 , pp. 999-1008
    • Jang, D.S.1    Kim, G.Y.2    Choi, H.I.3
  • 18
    • 0002734223 scopus 로고    scopus 로고
    • The markov chain monte carlo method: An approach to approximate counting and integration
    • ed. D. S. Hochbaum, (PWS Publishing)
    • M. Jerrum and A. Sinclair, The Markov chain Monte Carlo method: an approach to approximate counting and integration, in ed. D. S. Hochbaum, Approximation Algorithms for NP-hard (PWS Publishing, 1996).
    • (1996) Approximation Algorithms for NP-hard Problems
    • Jerrum, M.1    Sinclair, A.2
  • 21
    • 0036783857 scopus 로고    scopus 로고
    • A relaxation algorithm for real-time multiple view 3d-tracking
    • Y. Li, A. Hilton and J. Illingworth, A relaxation algorithm for real-time multiple view 3d-tracking, Imag. Vis. Comput. 20(12) (2002) 841-859.
    • (2002) Imag. Vis. Comput. , vol.20 , Issue.12 , pp. 841-859
    • Li, Y.1    Hilton, A.2    Illingworth, J.3
  • 22
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D. J. MacKay, Bayesian interpolation, Neural Comput. 4(3) (1992) 415-447.
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.1
  • 23
    • 0012751948 scopus 로고    scopus 로고
    • Learning Bayes net structure from sparse data sets
    • University of California, Berkeley
    • K. Murphy, Learning Bayes net structure from sparse data sets, Technical Report, University of California, Berkeley (2001).
    • (2001) Technical Report
    • Murphy, K.1
  • 24
    • 0028546145 scopus 로고
    • Dynamic belief networks for discrete monitoring
    • A. E. Nicholson and J. M. Brady, Dynamic belief networks for discrete monitoring, IEEE Trans. Syst. Man Cybern. 24(11) (1994) 1593-1610.
    • (1994) IEEE Trans. Syst. Man Cybern , vol.24 , Issue.11 , pp. 1593-1610
    • Nicholson, A.E.1    Brady, J.M.2
  • 28
    • 0342298487 scopus 로고    scopus 로고
    • Model-based stereo-visual tracking: Covariance analysis and tracking schemes
    • J. Ruiz-Alzola, C. Alberola-Lopez and J. R. Corredera, Model-based stereo-visual tracking: Covariance analysis and tracking schemes, Sign. Process. 80(1) (2000) 23-43.
    • (2000) Sign. Process , vol.80 , Issue.1 , pp. 23-43
    • Ruiz-Alzola, J.1    Alberola-Lopez, C.2    Corredera, J.R.3
  • 29
    • 29344474974 scopus 로고    scopus 로고
    • Real-time cooperative multi-target tracking by communicating active vision agents
    • N. Ukita and T. Matsuyama, Real-time cooperative multi-target tracking by communicating active vision agents, in Int. Conf. Pattern Recognition (2002), pp. II: 14-19.
    • (2002) Int. Conf. Pattern Recognition
    • Ukita, N.1    Matsuyama, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.