메뉴 건너뛰기




Volumn 4, Issue , 2005, Pages 1588-1589

Autonomous subgoal discovery and hierarchical abstraction for reinforcement learning using monte carlo method

Author keywords

[No Author keywords available]

Indexed keywords


EID: 29344448283     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (7)

References (10)
  • 2
    • 84942867726 scopus 로고    scopus 로고
    • An overview of maxq hierarchical reinforcement learning
    • Dietterich, T. G. 2000. An overview of maxq hierarchical reinforcement learning. Lecture Notes In Computer Science 1864.
    • (2000) Lecture Notes in Computer Science , vol.1864
    • Dietterich, T.G.1
  • 3
    • 0007907759 scopus 로고    scopus 로고
    • Emergent hierarchical control structures: Learning reactive / hierarchical relationships in reinforcement environments
    • Digney, B. 1996. Emergent hierarchical control structures: Learning reactive / hierarchical relationships in reinforcement environments. In Proceedings of the Fourth Conference on the Simulation of Adaptive Behavior.
    • (1996) Proceedings of the Fourth Conference on the Simulation of Adaptive Behavior
    • Digney, B.1
  • 5
    • 0034272032 scopus 로고    scopus 로고
    • Bounded-parameter markov decision processes
    • Givan, R.; Leach, S.; and Dean, T. 2000. Bounded-parameter markov decision processes. Artificial Intelligence 122(1-2):71-109.
    • (2000) Artificial Intelligence , vol.122 , Issue.1-2 , pp. 71-109
    • Givan, R.1    Leach, S.2    Dean, T.3
  • 6
    • 29344435556 scopus 로고    scopus 로고
    • Subgoal discovery for hierarchical reinforcement learning using learned policies
    • AAAI
    • Goel, S., and Huber, M. 2003. Subgoal discovery for hierarchical reinforcement learning using learned policies. In In Proceedings of the 16th International FLAIRS Conference, 346-350. AAAI.
    • (2003) In Proceedings of the 16th International FLAIRS Conference , pp. 346-350
    • Goel, S.1    Huber, M.2
  • 7
    • 0038178323 scopus 로고    scopus 로고
    • Solving factored MDPs using non-homogeneous partitions
    • Kim, K., and Dean, T. 2003. Solving factored MDPs using non-homogeneous partitions. Artificial Intelligence 147:225-251.
    • (2003) Artificial Intelligence , vol.147 , pp. 225-251
    • Kim, K.1    Dean, T.2
  • 10
    • 0033170372 scopus 로고    scopus 로고
    • Between MDPs and Semi-MDPs: Learning, planning, and representing knowledge at multiple temporal scales
    • Sutton, R.; Precup, D.; and Singh, S. 1999. Between MDPs and Semi-MDPs: Learning, planning, and representing knowledge at multiple temporal scales. Artificial Intelligence 112:181-211.
    • (1999) Artificial Intelligence , vol.112 , pp. 181-211
    • Sutton, R.1    Precup, D.2    Singh, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.