-
1
-
-
0001213151
-
Fractal functions and interpolation
-
M.F. BARNSLEY, Fractal functions and interpolation, Constr. Approx., 2 (1986), No. 4, pp. 303-329.
-
(1986)
Constr. Approx.
, vol.2
, Issue.4
, pp. 303-329
-
-
Barnsley, M.F.1
-
3
-
-
0002354550
-
The Calculus of Fractal Interpolation Functions
-
M. F. BARNSLEY AND A. N. HARRINGTON, The Calculus of Fractal Interpolation Functions, J. Approx. Theory, 57 (1989), pp. 14-34.
-
(1989)
J. Approx. Theory
, vol.57
, pp. 14-34
-
-
Barnsley, M.F.1
Harrington, A.N.2
-
4
-
-
29344432193
-
Fractals in multimedia
-
Springer
-
M.F. BARNSLEY, D. SAUPE AND E.R. VRSCAY, EDS., Fractals in Multimedia, I.M.A., 132, Springer, 2002.
-
(2002)
I.M.A.
, vol.132
-
-
Barnsley, M.F.1
Saupe, D.2
Vrscay, E.R.3
-
5
-
-
27144485655
-
On dimensional numbers of some continuous curves
-
Edgar, G. A., eds., Addison-Wesley
-
A. S. BESICOVITCH AND H. D. URSELL, On dimensional numbers of some continuous curves, in Classics on Fractals, Edgar, G. A., eds., Addison-Wesley, 1993, pp. 171-179.
-
(1993)
Classics on Fractals
, pp. 171-179
-
-
Besicovitch, A.S.1
Ursell, H.D.2
-
8
-
-
0003649545
-
-
J. Wiley & Sons,Lt.d., Chichester
-
K.J. FALCONER, Fractal Geometry, Mathematical Foundations and Applications, J. Wiley & Sons,Lt.d., Chichester, 1990.
-
(1990)
Fractal Geometry, Mathematical Foundations and Applications
-
-
Falconer, K.J.1
-
9
-
-
84966204183
-
Weierstrass non-differentiable. function
-
G.H. HARDY, Weierstrass non-differentiable. function, Trans. Amer. Math. Soc., 17 (1916), No. 3, pp. 301-325.
-
(1916)
Trans. Amer. Math. Soc.
, vol.17
, Issue.3
, pp. 301-325
-
-
Hardy, G.H.1
-
10
-
-
0001265433
-
Fractals and self similarity
-
J.E. HUTCHINSON, Fractals and Self Similarity, Indiana Univer. Math. J., 30 (1981), No. 5, pp. 713-747.
-
(1981)
Indiana Univer. Math. J.
, vol.30
, Issue.5
, pp. 713-747
-
-
Hutchinson, J.E.1
-
12
-
-
0037989694
-
Some results of convergence of cubic spline fractal interpolation functions
-
M. A. NAVASCUÉS AND M.V. SEBASTIÁN, Some results of convergence of cubic spline fractal interpolation functions, Fractals, 11 (2003), No. 1, pp. 1-7.
-
(2003)
Fractals
, vol.11
, Issue.1
, pp. 1-7
-
-
Navascués, M.A.1
Sebastián, M.V.2
-
13
-
-
8744266577
-
Generalization of Hermite functions by fractal interpolation
-
M.A. NAVASCUÉS AND M.V. SEBASTIÁN, Generalization of Hermite functions by fractal interpolation, J. of Approx. Theory, 131 (2004), No. 1, pp. 19-29.
-
(2004)
J. of Approx. Theory
, vol.131
, Issue.1
, pp. 19-29
-
-
Navascués, M.A.1
Sebastián, M.V.2
-
14
-
-
20144372609
-
Fitting curves by fractal interpolation: An application to the quantification of cognitive brain processes
-
Novak, M.M., eds., World Scientific Publishing Co., Inc., Teaneck, NJ
-
M. A. NAVASCUÉS AND M. V. SEBASTIÁN, Fitting curves by fractal interpolation: an application to the quantification of cognitive brain processes, in Thinking in Patterns: Fractals and Related Phenomena in Nature. Novak, M.M., eds., World Scientific Publishing Co., Inc., Teaneck, NJ, 2004, pp. 143-154.
-
(2004)
Thinking in Patterns: Fractals and Related Phenomena in Nature
, pp. 143-154
-
-
Navascués, M.A.1
Sebastián, M.V.2
-
15
-
-
0004197424
-
-
Robert. E. Krieger Publishing Co., Huntington, N.Y.
-
G. SANSON, Orthogonal Functions, Robert. E. Krieger Publishing Co., Huntington, N.Y., 1977.
-
(1977)
Orthogonal Functions
-
-
Sanson, G.1
-
16
-
-
29344465856
-
An alternative to correlation dimension for the quantification of bioelectric signal complexity
-
M. V. SEBASTIÁN AND M. A. NAVASCUÉS ET AL, An alternative to correlation dimension for the quantification of bioelectric signal complexity, WSEAS Trans. on Biol. & Biomed., 1 (2004), No. 3, pp. 357-362.
-
(2004)
WSEAS Trans. on Biol. & Biomed.
, vol.1
, Issue.3
, pp. 357-362
-
-
Sebastián, M.V.1
Navascués, M.A.2
-
17
-
-
0004173133
-
-
World Scientific Publishing Co., Inc., Teaneck, NJ
-
J. SZABADOS AND P. VERTESI, Interpolition of Functions, World Scientific Publishing Co., Inc., Teaneck, NJ, 1990.
-
(1990)
Interpolition of Functions
-
-
Szabados, J.1
Vertesi, P.2
|