메뉴 건너뛰기




Volumn 20, Issue , 2005, Pages 212-234

Krylov subspace spectral methods for variable-coefficient initial-boundary value problems

Author keywords

Gaussian quadrature; Lanczos method; Spectral methods; Variable coefficient

Indexed keywords


EID: 29344432412     PISSN: 10689613     EISSN: 10689613     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (23)

References (15)
  • 2
    • 0034423846 scopus 로고    scopus 로고
    • Computation of Gauss-Kronrod quadrature rules
    • D. CALVETTI, G. H. GOLUB, W. B. GRAGG, AND L. REICHEL, Computation of Gauss-Kronrod quadrature rules, Math. Comp., 69 (2000), pp. 1035-1052.
    • (2000) Math. Comp. , vol.69 , pp. 1035-1052
    • Calvetti, D.1    Golub, G.H.2    Gragg, W.B.3    Reichel, L.4
  • 3
    • 0003093333 scopus 로고
    • Matrices, moments and quadrature
    • June-July 1993, D. F. Griffiths and G. A. Watson (eds.), Longman Scientific & Technical
    • G. H. GOLUB AND C. MEURANT, Matrices, Moments and Quadrature, in Proceedings of the 15th Dundee Conference, June-July 1993, D. F. Griffiths and G. A. Watson (eds.), Longman Scientific & Technical, 1994.
    • (1994) Proceedings of the 15th Dundee Conference
    • Golub, G.H.1    Meurant, C.2
  • 5
    • 21344494565 scopus 로고
    • On the stability of the unsmoothed Fourier method for hyperbolic equations
    • J. GOODMAN, T. Hou, AND E. TADMOR, On the stability of the unsmoothed Fourier method for hyperbolic equations, Numer. Math., 67 (1994), pp. 93-129.
    • (1994) Numer. Math. , vol.67 , pp. 93-129
    • Goodman, J.1    Hou, T.2    Tadmor, E.3
  • 8
    • 0347799731 scopus 로고    scopus 로고
    • On Krylov subspace approximations to the matrix exponential operator
    • M. HOCHBRUCK AND C. LUBICH, On Krylov Subspace Approximations to the Matrix Exponential Operator, SIAM J. Numer. Anal., 34 (1996), pp. 1911-1925.
    • (1996) SIAM J. Numer. Anal. , vol.34 , pp. 1911-1925
    • Hochbruck, M.1    Lubich, C.2
  • 14
    • 0035595411 scopus 로고    scopus 로고
    • Why Gaussian quadrature in the complex plane?
    • P. E. SAYLOR AND D. C. SMOLARSKI, Why Gaussian quadrature in the complex plane?, Numer. Algorithms, 26 (2001), pp. 251-280.
    • (2001) Numer. Algorithms , vol.26 , pp. 251-280
    • Saylor, P.E.1    Smolarski, D.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.