-
3
-
-
0042785337
-
Dirac's map-color theorem for choosability
-
T. Böhme B. Mohar M. Stiebitz Dirac's map-color theorem for choosability J. Graph Theory 32 2000 327-339
-
(2000)
J. Graph Theory
, vol.32
, pp. 327-339
-
-
Böhme, T.1
Mohar, B.2
Stiebitz, M.3
-
4
-
-
0013498817
-
Note on the colouring of graphs
-
G.A. Dirac Note on the colouring of graphs Math. Z. 54 1951 347-353
-
(1951)
Math. Z.
, vol.54
, pp. 347-353
-
-
Dirac, G.A.1
-
5
-
-
0042668148
-
Map colour theorems related to the Heawood colour formula
-
G.A. Dirac Map colour theorems related to the Heawood colour formula J. London Math. Soc. 31 1956 460-471
-
(1956)
J. London Math. Soc.
, vol.31
, pp. 460-471
-
-
Dirac, G.A.1
-
6
-
-
84963088582
-
A theorem of R.L. Brooks and a conjecture of H. Hadwiger
-
G.A. Dirac A theorem of R.L. Brooks and a conjecture of H. Hadwiger Proc. London Math. Soc. 7 3 1957 161-195
-
(1957)
Proc. London Math. Soc.
, vol.7
, Issue.3
, pp. 161-195
-
-
Dirac, G.A.1
-
7
-
-
0042668147
-
Short proof of a map-colour theorem
-
G.A. Dirac Short proof of a map-colour theorem Canad. J. Math. 9 1957 225-226
-
(1957)
Canad. J. Math.
, vol.9
, pp. 225-226
-
-
Dirac, G.A.1
-
8
-
-
85163172268
-
A six-color problem
-
P. Franklin A six-color problem J. Math. Phys. 13 1934 363-369
-
(1934)
J. Math. Phys.
, vol.13
, pp. 363-369
-
-
Franklin, P.1
-
9
-
-
29244446889
-
Nordhaus-Gaddum-type theorems for decompositions into many parts
-
in print
-
Z. Füredi, A.V. Kostochka, M. Stiebitz, R. Škrekovski, D.B. West, Nordhaus-Gaddum-type theorems for decompositions into many parts, J. Graph Theory, in print.
-
J. Graph Theory
-
-
Füredi, Z.1
Kostochka, A.V.2
Stiebitz, M.3
Škrekovski, R.4
West, D.B.5
-
12
-
-
31244434673
-
A list version of Dirac's theorem on the number of edges in colour-critical graphs
-
A.V. Kostochka M. Stiebitz A list version of Dirac's theorem on the number of edges in colour-critical graphs J. Graph Theory 39 2002 165-167
-
(2002)
J. Graph Theory
, vol.39
, pp. 165-167
-
-
Kostochka, A.V.1
Stiebitz, M.2
-
18
-
-
0010965408
-
Blocks and the non-orientable genus of graphs
-
S. Stahl L.W. Beineke Blocks and the non-orientable genus of graphs J. Graph Theory 1 1977 75-78
-
(1977)
J. Graph Theory
, vol.1
, pp. 75-78
-
-
Stahl, S.1
Beineke, L.W.2
-
19
-
-
0003005975
-
Every planar graph is 5-choosable
-
C. Thomassen Every planar graph is 5-choosable J. Combin. Theory Ser. B 62 1994 180-181
-
(1994)
J. Combin. Theory Ser. B
, vol.62
, pp. 180-181
-
-
Thomassen, C.1
-
20
-
-
0011024022
-
Five coloring graphs on the torus
-
C. Thomassen Five coloring graphs on the torus J. Combin. Theory Ser. B 62 1994 11-33
-
(1994)
J. Combin. Theory Ser. B
, vol.62
, pp. 11-33
-
-
Thomassen, C.1
-
21
-
-
43949166590
-
List colorings of planar graphs
-
M. Voigt List colorings of planar graphs Discrete Math. 120 1993 215-219
-
(1993)
Discrete Math.
, vol.120
, pp. 215-219
-
-
Voigt, M.1
|