메뉴 건너뛰기




Volumn 62, Issue 9, 2005, Pages 1937-1952

State-space likelihoods for nonlinear fisheries time-series

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN ANALYSIS; FISHERY MODELING; MONTE CARLO ANALYSIS; TIME SERIES ANALYSIS;

EID: 29144479344     PISSN: 0706652X     EISSN: None     Source Type: Journal    
DOI: 10.1139/f05-116     Document Type: Article
Times cited : (51)

References (45)
  • 1
    • 0033475053 scopus 로고    scopus 로고
    • Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm
    • Booth, J.G., and Hobert, J.P. 1999. Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. J.R. Stat. Soc. Ser. B, 61: 265-285.
    • (1999) J.R. Stat. Soc. Ser. B , vol.61 , pp. 265-285
    • Booth, J.G.1    Hobert, J.P.2
  • 2
    • 21844487061 scopus 로고
    • Monte Carlo EM estimation for time series models involving counts
    • Chan, K., and Ledolter, J. 1995. Monte Carlo EM estimation for time series models involving counts. J. Am. Stat. Assoc. 90: 242-252.
    • (1995) J. Am. Stat. Assoc. , vol.90 , pp. 242-252
    • Chan, K.1    Ledolter, J.2
  • 3
    • 0020870076 scopus 로고
    • Estimating population size from relative abundance data measured with error
    • Collie, J.S., and Sissenwine, M.P. 1983. Estimating population size from relative abundance data measured with error. Can. J. Fish. Aquat. Sci. 40: 1871-1879.
    • (1983) Can. J. Fish. Aquat. Sci. , vol.40 , pp. 1871-1879
    • Collie, J.S.1    Sissenwine, M.P.2
  • 4
    • 1342287624 scopus 로고    scopus 로고
    • Better inferences from population dynamics experiments using Monte Carlo state-space likelihoods
    • de Valpine, P. 2003. Better inferences from population dynamics experiments using Monte Carlo state-space likelihoods. Ecology, 84: 3064-3077.
    • (2003) Ecology , vol.84 , pp. 3064-3077
    • De Valpine, P.1
  • 5
    • 2942538599 scopus 로고    scopus 로고
    • Monte Carlo state-space likelihoods by weighted posterior kernel density estimation
    • de Valpine, P. 2004. Monte Carlo state-space likelihoods by weighted posterior kernel density estimation. J. Am. Stat. Assoc. 99: 523-536.
    • (2004) J. Am. Stat. Assoc. , vol.99 , pp. 523-536
    • De Valpine, P.1
  • 6
    • 0036160013 scopus 로고    scopus 로고
    • Fitting population models with process noise and observation error
    • de Valpine, P., and Hastings, A. 2002. Fitting population models with process noise and observation error. Ecol. Monogr. 72: 51-76.
    • (2002) Ecol. Monogr. , vol.72 , pp. 51-76
    • De Valpine, P.1    Hastings, A.2
  • 7
    • 0000094018 scopus 로고    scopus 로고
    • Monte Carlo maximum likelihood estimation for non-Gaussian state space models
    • Durbin, J., and Koopman, S.J. 1997. Monte Carlo maximum likelihood estimation for non-Gaussian state space models. Biometrika, 84: 669-684.
    • (1997) Biometrika , vol.84 , pp. 669-684
    • Durbin, J.1    Koopman, S.J.2
  • 8
    • 0034354798 scopus 로고    scopus 로고
    • Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives
    • Durbin, J., and Koopman, S.J. 2000. Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives. J.R. Stat. Soc. Ser. B, 62: 3-56.
    • (2000) J.R. Stat. Soc. Ser. B , vol.62 , pp. 3-56
    • Durbin, J.1    Koopman, S.J.2
  • 9
    • 0028992650 scopus 로고
    • On a structural time series method for estimating stock biomass and recruitment from catch and effort data
    • Freeman, S., and Kirkwood, G. 1994. On a structural time series method for estimating stock biomass and recruitment from catch and effort data. Fish. Res. 22: 77-98.
    • (1994) Fish. Res. , vol.22 , pp. 77-98
    • Freeman, S.1    Kirkwood, G.2
  • 10
    • 0000051109 scopus 로고
    • Constrained Monte Carlo maximum likelihood for dependent data
    • Geyer, C.J., and Thompson, E.A. 1992. Constrained Monte Carlo maximum likelihood for dependent data. J.R. Stat. Soc. Ser. B, 54: 657-699.
    • (1992) J.R. Stat. Soc. Ser. B , vol.54 , pp. 657-699
    • Geyer, C.J.1    Thompson, E.A.2
  • 12
    • 0027580559 scopus 로고
    • Novel approach to nonlinear non-Gaussian Bayesian state estimation
    • Gordon, N.J., Salmond, D.J., and Smith, A.F.M. 1993. Novel approach to nonlinear non-Gaussian Bayesian state estimation. IEE Proceedings F, 140: 107-113.
    • (1993) IEE Proceedings F , vol.140 , pp. 107-113
    • Gordon, N.J.1    Salmond, D.J.2    Smith, A.F.M.3
  • 13
    • 0000411430 scopus 로고
    • Time series analysis of catch-at-age observations
    • Gudmundsson, G. 1994. Time series analysis of catch-at-age observations. Appl. Stat. 43: 117-126.
    • (1994) Appl. Stat. , vol.43 , pp. 117-126
    • Gudmundsson, G.1
  • 17
    • 0004694060 scopus 로고    scopus 로고
    • Approximating and maximising the likelihood for a general state-space model
    • Edited by A. Doucet, N. de Freitas, and N. Gordon. Springer, New York
    • Hürzeler, M., and Künsch, H.R. 2001. Approximating and maximising the likelihood for a general state-space model. In Sequential Monte Carlo methods in practice. Edited by A. Doucet, N. de Freitas, and N. Gordon. Springer, New York. pp. 159-175.
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 159-175
    • Hürzeler, M.1    Künsch, H.R.2
  • 19
    • 0030302870 scopus 로고    scopus 로고
    • Kalman filtering the delay-difference equation: Practical approaches and simulations
    • Kimura, D.K., Balsiger, J.W., and Ito, D.H. 1996. Kalman filtering the delay-difference equation: practical approaches and simulations. Fish. Bull. 94: 678-691.
    • (1996) Fish. Bull. , vol.94 , pp. 678-691
    • Kimura, D.K.1    Balsiger, J.W.2    Ito, D.H.3
  • 20
    • 84950459387 scopus 로고
    • Non-Gaussian state-space modeling of nonstationary time series
    • Kitagawa, G. 1987. Non-Gaussian state-space modeling of nonstationary time series (with Discussion). J. Am. Stat. Assoc. 82: 1032-1063.
    • (1987) J. Am. Stat. Assoc. , vol.82 , pp. 1032-1063
    • Kitagawa, G.1
  • 21
    • 0000483545 scopus 로고
    • Measurement errors and uncertainty in parameter estimates for stock and recruitment
    • Ludwig, D., and Walters, C.J. 1981. Measurement errors and uncertainty in parameter estimates for stock and recruitment. Can. J. Fish. Aquat. Sci. 38: 711-720.
    • (1981) Can. J. Fish. Aquat. Sci. , vol.38 , pp. 711-720
    • Ludwig, D.1    Walters, C.J.2
  • 22
    • 0000604638 scopus 로고
    • A robust method for parameter estimation from catch and effort data
    • Ludwig, D., and Walters, C.J. 1989. A robust method for parameter estimation from catch and effort data. Can. J. Fish. Aquat. Sci. 46: 137-144.
    • (1989) Can. J. Fish. Aquat. Sci. , vol.46 , pp. 137-144
    • Ludwig, D.1    Walters, C.J.2
  • 23
    • 0000443353 scopus 로고
    • Comparison of two models and two estimation methods for catch and effort data
    • Ludwig, D., Walters, C.J., and Cooke, J. 1988. Comparison of two models and two estimation methods for catch and effort data. Nat. Res. Model. 2: 457-498.
    • (1988) Nat. Res. Model. , vol.2 , pp. 457-498
    • Ludwig, D.1    Walters, C.J.2    Cooke, J.3
  • 24
    • 0028166512 scopus 로고
    • A Bayesian approach to stock assessment and harvest decisions using the sampling/importance resampling algorithm
    • McAllister, M.K., Pikitch, E.K., Punt, A.E., and Hilborn, R. 1994. A Bayesian approach to stock assessment and harvest decisions using the sampling/importance resampling algorithm. Can. J. Fish. Aquat. Sci. 51: 2673-2687.
    • (1994) Can. J. Fish. Aquat. Sci. , vol.51 , pp. 2673-2687
    • McAllister, M.K.1    Pikitch, E.K.2    Punt, A.E.3    Hilborn, R.4
  • 25
    • 0031479575 scopus 로고    scopus 로고
    • Maximum likelihood algorithms for generalized linear models
    • McCulloch, C.E. 1997. Maximum likelihood algorithms for generalized linear models. J. Am. Stat. Assoc. 92: 162-170.
    • (1997) J. Am. Stat. Assoc. , vol.92 , pp. 162-170
    • McCulloch, C.E.1
  • 26
    • 0024187052 scopus 로고
    • Some problems in estimating population sizes from catch-at-age data
    • Mendelssohn, R. 1988. Some problems in estimating population sizes from catch-at-age data. Fish. Bull. 86: 617-630.
    • (1988) Fish. Bull. , vol.86 , pp. 617-630
    • Mendelssohn, R.1
  • 27
    • 0032960742 scopus 로고    scopus 로고
    • Bayesian stock assessment using a state-space implementation of the delay difference model
    • Meyer, R., and Millar, R.B. 1999. Bayesian stock assessment using a state-space implementation of the delay difference model. Can. J. Fish. Aquat. Sci. 56: 37-52.
    • (1999) Can. J. Fish. Aquat. Sci. , vol.56 , pp. 37-52
    • Meyer, R.1    Millar, R.B.2
  • 28
    • 0034360571 scopus 로고    scopus 로고
    • Non-linear state space modelling of fisheries biomass dynamics by using Metropolis-Hastings within-Gibbs sampling
    • Millar, R.B., and Meyer, R. 2000. Non-linear state space modelling of fisheries biomass dynamics by using Metropolis-Hastings within-Gibbs sampling. Appl. Stat. 49: 327-342.
    • (2000) Appl. Stat. , vol.49 , pp. 327-342
    • Millar, R.B.1    Meyer, R.2
  • 30
    • 0001074783 scopus 로고
    • Utility of structural time series models and the Kalman Filter for predicting consequences of fishery actions
    • Edited by G. Kruse, D. Eggers, R. Marasco, C. Pautzke, and T.J. Quinn, II. Alaska Sea Grant College Program Report No. 93-02. University of Alaska, Fairbanks
    • Pella, J.J. 1993. Utility of structural time series models and the Kalman Filter for predicting consequences of fishery actions. In Proceedings of the International Symposium on Management Strategies for Exploited Fish Population. Edited by G. Kruse, D. Eggers, R. Marasco, C. Pautzke, and T.J. Quinn, II. Alaska Sea Grant College Program Report No. 93-02. University of Alaska, Fairbanks. pp. 571-593.
    • (1993) Proceedings of the International Symposium on Management Strategies for Exploited Fish Population , pp. 571-593
    • Pella, J.J.1
  • 31
    • 1542427941 scopus 로고    scopus 로고
    • Filtering via simulation: Auxiliary particle filters
    • Pitt, M.K., and Shephard, N. 1999. Filtering via simulation: auxiliary particle filters. J. Am. Stat. Assoc. 94: 590-599.
    • (1999) J. Am. Stat. Assoc. , vol.94 , pp. 590-599
    • Pitt, M.K.1    Shephard, N.2
  • 32
    • 0027333237 scopus 로고
    • Fitting surplus production models: Comparing methods and measuring uncertainty
    • Polacheck, T., Hilborn, R., and Punt, A.E. 1993. Fitting surplus production models: comparing methods and measuring uncertainty. Can. J. Fish. Aquat. Sci. 50: 2597-2607.
    • (1993) Can. J. Fish. Aquat. Sci. , vol.50 , pp. 2597-2607
    • Polacheck, T.1    Hilborn, R.2    Punt, A.E.3
  • 34
    • 0030810587 scopus 로고    scopus 로고
    • Fisheries stock assessment and decision analysis: The Bayesian approach
    • Punt, A.E., and Hilborn, R. 1997. Fisheries stock assessment and decision analysis: the Bayesian approach. Rev. Fish Biol. Fish. 7: 35-63.
    • (1997) Rev. Fish Biol. Fish. , vol.7 , pp. 35-63
    • Punt, A.E.1    Hilborn, R.2
  • 37
    • 0028159701 scopus 로고
    • A general framework for developing sequential fisheries models
    • Schnute, J.T. 1994. A general framework for developing sequential fisheries models. Can. J. Fish. Aquat. Sci. 51: 1676-1688.
    • (1994) Can. J. Fish. Aquat. Sci. , vol.51 , pp. 1676-1688
    • Schnute, J.T.1
  • 38
    • 0036231230 scopus 로고    scopus 로고
    • Estimating salmon stock-recruitment relationships from catch and escapement data
    • Schnute, J.T., and Kronlund, A. 2002. Estimating salmon stock-recruitment relationships from catch and escapement data. Can. J. Fish. Aquat. Sci. 59: 433-449.
    • (2002) Can. J. Fish. Aquat. Sci. , vol.59 , pp. 433-449
    • Schnute, J.T.1    Kronlund, A.2
  • 39
    • 0025658463 scopus 로고
    • An errors-in-variables bias model with an application to salmon hatchery data
    • Schnute, J.T., Mulligan, T., and Kuhn, B. 1990. An errors-in-variables bias model with an application to salmon hatchery data. Can. J. Fish. Aquat. Sci. 47: 1453-1467.
    • (1990) Can. J. Fish. Aquat. Sci. , vol.47 , pp. 1453-1467
    • Schnute, J.T.1    Mulligan, T.2    Kuhn, B.3
  • 40
    • 0029545005 scopus 로고
    • The influence of error on population estimates from catch-age models
    • Schnute, J.T., and Richards, L.J. 1995. The influence of error on population estimates from catch-age models. Can. J. Fish. Aquat. Sci. 52: 2063-2077.
    • (1995) Can. J. Fish. Aquat. Sci. , vol.52 , pp. 2063-2077
    • Schnute, J.T.1    Richards, L.J.2
  • 44
    • 0026615552 scopus 로고
    • A Kalman Filter approach to catch-at-length analysis
    • Sullivan, P.J. 1992. A Kalman Filter approach to catch-at-length analysis. Biometrics, 48: 237-257.
    • (1992) Biometrics , vol.48 , pp. 237-257
    • Sullivan, P.J.1
  • 45
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
    • Wer, G.C.G., and Tanner, M.A. 1990. A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. J. Am. Stat. Assoc. 85: 699-704.
    • (1990) J. Am. Stat. Assoc. , vol.85 , pp. 699-704
    • Wer, G.C.G.1    Tanner, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.