메뉴 건너뛰기




Volumn 115, Issue 4, 2005, Pages 499-508

A-Statistical extension of the Korovkin type approximation theorem

Author keywords

A statistical convergence; Korovkin theorem; Positive linear operator

Indexed keywords

APPROXIMATION THEORY; CONVERGENCE OF NUMERICAL METHODS; FUNCTIONS; LINEAR SYSTEMS; MATHEMATICAL OPERATORS; MATRIX ALGEBRA; STATISTICAL METHODS;

EID: 29044444621     PISSN: 02534142     EISSN: None     Source Type: Journal    
DOI: 10.1007/BF02829812     Document Type: Conference Paper
Times cited : (34)

References (17)
  • 1
    • 0003258519 scopus 로고
    • Korovkin type approximation theory and its applications
    • (Berlin: de Gruyter)
    • Altomare F and Campiti M, Korovkin type approximation theory and its applications, de Gruyter Stud. Math. (Berlin: de Gruyter) (1994) vol. 17
    • (1994) De Gruyter Stud. Math. , vol.17
    • Altomare, F.1    Campiti, M.2
  • 2
    • 0000231805 scopus 로고
    • A Bernstein type operator approximating continuous functions on semiaxis
    • Bleimann G, Butzer P L and Hahn L, A Bernstein type operator approximating continuous functions on semiaxis, Indag. Math. 42 (1980) 255-262
    • (1980) Indag. Math. , vol.42 , pp. 255-262
    • Bleimann, G.1    Butzer, P.L.2    Hahn, L.3
  • 3
    • 0040911728 scopus 로고
    • Summability of Hermite-Fejér interpolation for functions of bounded variation
    • Bojanic R and Khan M K, Summability of Hermite-Fejér interpolation for functions of bounded variation, J. Nat. Sci. Math. 32 (1992) 5-10
    • (1992) J. Nat. Sci. Math. , vol.32 , pp. 5-10
    • Bojanic, R.1    Khan, M.K.2
  • 7
    • 0242350915 scopus 로고    scopus 로고
    • A-statistical convergence of approximating operators
    • Duman O, Khan M K and Orhan C, A-statistical convergence of approximating operators, Math. Inequal. Appl. 6 (2003) 689-699
    • (2003) Math. Inequal. Appl. , vol.6 , pp. 689-699
    • Duman, O.1    Khan, M.K.2    Orhan, C.3
  • 8
    • 0000243940 scopus 로고
    • Sur la convergence statistique
    • Fast H, Sur la convergence statistique, Colloq. Math. 2 (1951) 241-244
    • (1951) Colloq. Math. , vol.2 , pp. 241-244
    • Fast, H.1
  • 10
    • 0000363911 scopus 로고
    • On statistical convergence
    • Fridy J A, On statistical convergence, Analysis 5 (1985) 301-313
    • (1985) Analysis , vol.5 , pp. 301-313
    • Fridy, J.A.1
  • 11
    • 0036520728 scopus 로고    scopus 로고
    • Some approximation theorems via statistical convergence
    • Gadjiev A D and Orhan C, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32 (2002) 129-138
    • (2002) Rocky Mountain J. Math. , vol.32 , pp. 129-138
    • Gadjiev, A.D.1    Orhan, C.2
  • 12
    • 0039494346 scopus 로고    scopus 로고
    • On the monotonicity of positive linear operators
    • Khan M K, Vecchia B D and Fassih A, On the monotonicity of positive linear operators, J. Approx. Theory 92 (1998) 22-37
    • (1998) J. Approx. Theory , vol.92 , pp. 22-37
    • Khan, M.K.1    Vecchia, B.D.2    Fassih, A.3
  • 13
    • 84934277295 scopus 로고
    • Matrix summability of statistically convergent sequences
    • Kolk E, Matrix summability of statistically convergent sequences, Analysis 13 (1993) 77-83
    • (1993) Analysis , vol.13 , pp. 77-83
    • Kolk, E.1
  • 14
    • 0002849437 scopus 로고
    • The statistical convergence in Banach spaces
    • Kolk E, The statistical convergence in Banach spaces, Tartu Ül. Toimetised 928 (1991) 41-52
    • (1991) Tartu Ül. Toimetised , vol.928 , pp. 41-52
    • Kolk, E.1
  • 16
    • 84966219894 scopus 로고
    • A measure theoretical subsequence characterization of statistical convergence
    • Miller H I, A measure theoretical subsequence characterization of statistical convergence, Trans. Am. Math. Soc. 347 (1995) 1811-1819
    • (1995) Trans. Am. Math. Soc. , vol.347 , pp. 1811-1819
    • Miller, H.I.1
  • 17
    • 0344669291 scopus 로고
    • Sur la convergence ordinaire et la convergence asymptotique
    • Steinhaus H, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73-74
    • (1951) Colloq. Math. , vol.2 , pp. 73-74


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.