메뉴 건너뛰기




Volumn 219, Issue 10, 2005, Pages 1119-1137

RULES-6: A simple rule induction algorithm for handling large data sets

Author keywords

Classification; Discretization; Inductive learning; Noise handling; Rule induction

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONSTRAINT THEORY; DATA HANDLING; LEARNING SYSTEMS; MECHANISMS; OPTIMIZATION; PROBABILITY;

EID: 28944445792     PISSN: 09544062     EISSN: None     Source Type: Journal    
DOI: 10.1243/095440605X31931     Document Type: Article
Times cited : (13)

References (69)
  • 2
    • 84945529125 scopus 로고    scopus 로고
    • AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing
    • Barcelona, Spain
    • Monostori, L. AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing. In Proceedings of the 15th Triennial World Congress, Barcelona, Spain, 2002, pp. 119-130.
    • (2002) Proceedings of the 15th Triennial World Congress , pp. 119-130
    • Monostori, L.1
  • 5
    • 0001857179 scopus 로고
    • Learning efficient classification procedures and their application to chess endgames
    • (Eds R. S. Michalski, J. G. Carbonell, and T. M. Mitchell), (Tioga Publishing Co., Palo Alto, CA)
    • Quinlan, J. R. Learning efficient classification procedures and their application to chess endgames. In Machine learning: an artificial intelligence approach (Eds R. S. Michalski, J. G. Carbonell, and T. M. Mitchell), 1983, Vol. I, pp. 463-482 (Tioga Publishing Co., Palo Alto, CA).
    • (1983) Machine Learning: An Artificial Intelligence Approach , vol.1 , pp. 463-482
    • Quinlan, J.R.1
  • 6
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J. R. Induction of decision trees. Mach. Learn., 1986, 1, 81-106.
    • (1986) Mach. Learn. , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 8
  • 9
    • 21644460416 scopus 로고    scopus 로고
    • Data Mining Tools C5.0
    • RuleQuest. Pty Ltd, 30 Athena Avenue, St Ives NSW 2075, Australia, available from: accessed 1 February
    • RuleQuest. Data Mining Tools C5.0. Pty Ltd, 30 Athena Avenue, St Ives NSW 2075, Australia, available from: http://www.rulequest.com/ see5-info.html, accessed 1 February 2003.
    • (2003)
  • 14
    • 85005299854 scopus 로고
    • The multi-purpose incremental learning system AQ15 and its testing application to three medical domains
    • (Morgan Kaufmann, Los Altos, CA)
    • Michalski, R. S., Mozetic, I., Hong, J., and Lavrac, N. The multi-purpose incremental learning system AQ15 and its testing application to three medical domains. American association of artificial intelligence, 1986, pp. 1041-1045 (Morgan Kaufmann, Los Altos, CA).
    • (1986) American Association of Artificial Intelligence , pp. 1041-1045
    • Michalski, R.S.1    Mozetic, I.2    Hong, J.3    Lavrac, N.4
  • 15
    • 0346269510 scopus 로고    scopus 로고
    • The AQ19 system for machine learning and pattern discovery: A general description and user guide
    • Reports of the Machine Learning and Inference Laboratory, MLI 01-2, George Mason University, Fairfax, VA, USA
    • Michalski, R. S. and Kaufman, K. A. The AQ19 system for machine learning and pattern discovery: a general description and user guide. Reports of the Machine Learning and Inference Laboratory, MLI 01-2, George Mason University, Fairfax, VA, USA, 2001.
    • (2001)
    • Michalski, R.S.1    Kaufman, K.A.2
  • 16
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark, P. and Niblett, T. The CN2 induction algorithm. Mach. Learn., 1989, 3(4), 261-284.
    • (1989) Mach. Learn. , vol.3 , Issue.4 , pp. 261-284
    • Clark, P.1    Niblett, T.2
  • 18
    • 85149612939 scopus 로고
    • Fast effective rule induction
    • Lake Tahoe City, California, USA, (Morgan Kaufmann, San Francisco, CA)
    • Cohen, W. W. Fast effective rule induction. In Proceedings of the 12th International Conference on Machine learning, Lake Tahoe City, California, USA, 1995, pp. 115-123 (Morgan Kaufmann, San Francisco, CA).
    • (1995) Proceedings of the 12th International Conference on Machine Learning , pp. 115-123
    • Cohen, W.W.1
  • 20
    • 1442267080 scopus 로고
    • Learning decision lists
    • Rivest, R. Learning decision lists. Mach. Learn., 1987, 2, 229-246.
    • (1987) Mach. Learn. , vol.2 , pp. 229-246
    • Rivest, R.1
  • 22
    • 0029219033 scopus 로고
    • RULES: A simple rule extraction system
    • Pham, D. T. and Aksoy, M. S. RULES: a simple rule extraction system. Expert Syst. Appl., 1995, 8(1), 59-65.
    • (1995) Expert Syst. Appl. , vol.8 , Issue.1 , pp. 59-65
    • Pham, D.T.1    Aksoy, M.S.2
  • 23
    • 0000919197 scopus 로고
    • A new algorithm for inductive learning
    • Pham, D. T. and Aksoy, M. S. A new algorithm for inductive learning. J. Syst. Eng., 1995, 5, 115-122.
    • (1995) J. Syst. Eng. , vol.5 , pp. 115-122
    • Pham, D.T.1    Aksoy, M.S.2
  • 24
    • 0031190828 scopus 로고    scopus 로고
    • An efficient algorithm for automatic knowledge acquisition
    • Pham, D. T. and Dimov, S. S. An efficient algorithm for automatic knowledge acquisition. Pattern Recog., 1997, 30(7), 1137-1143.
    • (1997) Pattern Recog. , vol.30 , Issue.7 , pp. 1137-1143
    • Pham, D.T.1    Dimov, S.S.2
  • 29
    • 28944450069 scopus 로고    scopus 로고
    • Automated visual inspection of engine valve stem seals
    • Internal Report, University of Wales Cardiff, Cardiff, UK
    • Jennings, N. R. Automated visual inspection of engine valve stem seals. Internal Report, University of Wales Cardiff, Cardiff, UK, 1996.
    • (1996)
    • Jennings, N.R.1
  • 30
    • 0025389210 scopus 로고
    • Boolean feature discovery in empirical learning
    • Pagallo, G. and Haussler, D. Boolean feature discovery in empirical learning. Mach. Learn., 1990, 3, 71-99.
    • (1990) Mach. Learn. , vol.3 , pp. 71-99
    • Pagallo, G.1    Haussler, D.2
  • 31
    • 18444393505 scopus 로고    scopus 로고
    • A unified approach to concept learning
    • PhD Thesis, University of California, Irvine
    • Domingos, P. A unified approach to concept learning. PhD Thesis, University of California, Irvine, 1997.
    • (1997)
    • Domingos, P.1
  • 33
    • 0002128687 scopus 로고
    • Learning with rare cases and small disjuncts
    • Lake Tahoe City, California, USA, (Morgan Kaufmann, San Francisco, CA)
    • Weiss, G. M. Learning with rare cases and small disjuncts. In Proceedings of the 12th International Conference on Machine learning, Lake Tahoe City, California, USA, 1995, pp. 558-565 (Morgan Kaufmann, San Francisco, CA).
    • (1995) Proceedings of the 12th International Conference on Machine Learning , pp. 558-565
    • Weiss, G.M.1
  • 34
    • 0002949285 scopus 로고    scopus 로고
    • The problem with noise and small disjuncts
    • Madison, Wisconsin, USA, (Morgan Kaufmann, San Francisco, CA)
    • Weiss, G. M. and Hirsh, H. The problem with noise and small disjuncts. In Proceedings of the 15th International Conference on Machine learning, Madison, Wisconsin, USA, 1998, pp. 574-578 (Morgan Kaufmann, San Francisco, CA).
    • (1998) Proceedings of the 15th International Conference on Machine Learning , pp. 574-578
    • Weiss, G.M.1    Hirsh, H.2
  • 35
  • 38
    • 0024103809 scopus 로고
    • PRISM: An algorithm for inducing modular rules
    • Cendrowska, J. PRISM: an algorithm for inducing modular rules. Int. J. Man-Mach Studies, 1987, 27, 349-370.
    • (1987) Int. J. Man-Mach Studies , vol.27 , pp. 349-370
    • Cendrowska, J.1
  • 41
    • 0042990921 scopus 로고
    • Systematic search for categorical attribute-value data-driven machine learning
    • (Eds C. Rowles, H. Liu, and N. Foo), Melbourne, (World Scientific, Chicago)
    • Webb, G. Systematic search for categorical attribute-value data-driven machine learning. In AI'94-Proceedings of the sixth Australian joint conference on artificial intelligence (Eds C. Rowles, H. Liu, and N. Foo), Melbourne, 1993, pp. 342-347 (World Scientific, Chicago).
    • (1993) AI'94-Proceedings of the Sixth Australian Joint Conference on Artificial Intelligence , pp. 342-347
    • Webb, G.1
  • 42
    • 0000835392 scopus 로고
    • OPUS: An efficient admissible algorithm for unordered search
    • Webb, G. OPUS: an efficient admissible algorithm for unordered search. J. Artif. Intell. Res., 1995, 3, 431-465.
    • (1995) J. Artif. Intell. Res. , vol.3 , pp. 431-465
    • Webb, G.1
  • 43
    • 28944454174 scopus 로고    scopus 로고
    • Machine learning as massive search
    • PhD Thesis, Department of Computer Science and Engineering, University of Washington
    • Segal, R. B. Machine learning as massive search. PhD Thesis, Department of Computer Science and Engineering, University of Washington, 1997.
    • (1997)
    • Segal, R.B.1
  • 45
    • 28944453203 scopus 로고    scopus 로고
    • Design and analysis of scalable rule induction systems
    • PhD Thesis, University of Wales Cardiff, School of Engineering, Systems Engineering Division, Cardiff, UK
    • Afify, A. A. Design and analysis of scalable rule induction systems. PhD Thesis, University of Wales Cardiff, School of Engineering, Systems Engineering Division, Cardiff, UK, 2004.
    • (2004)
    • Afify, A.A.1
  • 48
    • 0031224390 scopus 로고    scopus 로고
    • Zeta: A global method for discretization of continuous variables
    • Ho, K. M. and Scott, P. D. Zeta: a global method for discretization of continuous variables. IEEE Trans. Knowl. Data Eng., 1997, 9(5), 718-730.
    • (1997) IEEE Trans. Knowl. Data Eng. , vol.9 , Issue.5 , pp. 718-730
    • Ho, K.M.1    Scott, P.D.2
  • 51
    • 84947714091 scopus 로고    scopus 로고
    • Multi-interval discretization methods for decision tree learning
    • (Eds A. Amin, D. Dori, P. Pudil, and H. Freeman), (Springer-Verlag, Germany)
    • Trautzsch, S. and Perner, P. Multi-interval discretization methods for decision tree learning. In Advances in pattern recognition (Eds A. Amin, D. Dori, P. Pudil, and H. Freeman), 1998, 1451, pp. 475-482 (Springer-Verlag, Germany).
    • (1998) Advances in Pattern Recognition , vol.1451 , pp. 475-482
    • Trautzsch, S.1    Perner, P.2
  • 53
    • 0023451088 scopus 로고
    • Synthesizing statistical knowledge from incomplete mixed-mode data
    • Wong, A. K. C. and Chiu, D. K. Y. Synthesizing statistical knowledge from incomplete mixed-mode data. IEEE Trans. Pattern Anal. Mach. Intell., 1987, 9(6), 796-805.
    • (1987) IEEE Trans. Pattern Anal. Mach. Intell. , vol.9 , Issue.6 , pp. 796-805
    • Wong, A.K.C.1    Chiu, D.K.Y.2
  • 54
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used data sets
    • Holte, R. C. Very simple classification rules perform well on most commonly used data sets. Mach. Learn., 1993, 11, 63-90.
    • (1993) Mach. Learn. , vol.11 , pp. 63-90
    • Holte, R.C.1
  • 55
    • 37749034335 scopus 로고
    • On changing continuous attributes into ordered discrete attributes
    • Porto, Portugal, (Springer-Verlag, Germany)
    • Catlett, J. On changing continuous attributes into ordered discrete attributes. In Proceedings of the European Working Session on Learning, Porto, Portugal, 1991, pp. 164-178 (Springer-Verlag, Germany).
    • (1991) Proceedings of the European Working Session on Learning , pp. 164-178
    • Catlett, J.1
  • 57
    • 0003024008 scopus 로고
    • On the handling of continuous-valued attributes in decision tree generation
    • Fayyad, U. M. and Irani, K. B. On the handling of continuous-valued attributes in decision tree generation. Mach. Learn., 1992, 8, 87-102.
    • (1992) Mach. Learn. , vol.8 , pp. 87-102
    • Fayyad, U.M.1    Irani, K.B.2
  • 59
    • 85013576689 scopus 로고
    • Theory and application of agnostic PAC-learning with small decision trees
    • Lake Tahoe City, California, USA, (Morgan Kaufmann, San Francisco, CA)
    • Auer, P., Holte, R. C., and Maass, W. Theory and application of agnostic PAC-learning with small decision trees. In Proceedings of the 12th International Conference on Machine learning, Lake Tahoe City, California, USA, 1995, pp. 21-29 (Morgan Kaufmann, San Francisco, CA).
    • (1995) Proceedings of the 12th International Conference on Machine Learning , pp. 21-29
    • Auer, P.1    Holte, R.C.2    Maass, W.3
  • 60
    • 0002435404 scopus 로고
    • Efficient algorithms for finding multi-way splits for decision trees
    • Lake Tahoe City, California, USA, (Morgan Kaufmann, San Francisco CA)
    • Fulton, T., Kasif, S., and Salzberg, S. Efficient algorithms for finding multi-way splits for decision trees. In Proceedings of the 12th International Conference on Machine learning, Lake Tahoe City, California, USA, 1995, pp. 244-251 (Morgan Kaufmann, San Francisco CA).
    • (1995) Proceedings of the 12th International Conference on Machine Learning , pp. 244-251
    • Fulton, T.1    Kasif, S.2    Salzberg, S.3
  • 61
    • 27344454032 scopus 로고    scopus 로고
    • On fast and simple algorithms for finding maximal subarrays and applications on computational learning theory
    • (Springer-Verlag, Heidelberg)
    • Birkendorf, A. On fast and simple algorithms for finding maximal subarrays and applications on computational learning theory. In Lecture notes in artificial intelligence, 1997, 1208, pp. 198-209 (Springer-Verlag, Heidelberg).
    • (1997) Lecture Notes in Artificial Intelligence , vol.1208 , pp. 198-209
    • Birkendorf, A.1
  • 62
    • 0003762036 scopus 로고    scopus 로고
    • Efficient range partitioning in classification learning
    • PhD Thesis, Department of Computer Science, University of Helsinki, Finland
    • Rousu, J. Efficient range partitioning in classification learning. PhD Thesis, Department of Computer Science, University of Helsinki, Finland, 2001.
    • (2001)
    • Rousu, J.1
  • 63
    • 15544389033 scopus 로고    scopus 로고
    • Technical aspects of data mining
    • PhD Thesis, University of Wales Cardiff, Cardiff, UK
    • Cai, Z. Technical aspects of data mining. PhD Thesis, University of Wales Cardiff, Cardiff, UK, 2001.
    • (2001)
    • Cai, Z.1
  • 64
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous features
    • Lake Tahoe City, California, USA, (Morgan Kaufmann, San Francisco, CA)
    • Dougherty, J., Kohavi, R., and Sahami, M. Supervised and unsupervised discretization of continuous features. In Proceedings of the 12th international Conference on Machine learning, Lake Tahoe City, California, USA, 1995, pp. 194-202 (Morgan Kaufmann, San Francisco, CA).
    • (1995) Proceedings of the 12th International Conference on Machine Learning , pp. 194-202
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 67
    • 0003408496 scopus 로고    scopus 로고
    • UCI repository of machine learning databases
    • University of California, Department of Information and Computer Science, Irvine, CA, 1998, available from accessed 1 February
    • Blake, C. L. and Merz, C. J. UCI repository of machine learning databases. University of California, Department of Information and Computer Science, Irvine, CA, 1998, available from http://www.ics.uci. edu/~mlearn/MLRepository.html, accessed 1 February 2003.
    • (2003)
    • Blake, C.L.1    Merz, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.