-
1
-
-
0343152990
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.67.661
-
A. K. Ekert, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.67. 661, 67, 661 (1991).
-
(1991)
Phys. Rev. Lett.
, vol.67
, pp. 661
-
-
Ekert, A.K.1
-
2
-
-
11944263767
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.68.557
-
C. H. Bennett, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.68. 557, 68, 557 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 557
-
-
Bennett, C.H.1
-
3
-
-
4243059985
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.70.1895
-
C. H. Bennett, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.70. 1895, 70, 1895 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 1895
-
-
Bennett, C.H.1
-
4
-
-
2442492740
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.81.5932
-
H-J. Briegel, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.81. 5932, 81, 5932 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 5932
-
-
Briegel, H.-J.1
-
5
-
-
27044434968
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.75.4337
-
P. G. Kwiat, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.75. 4337, 75, 4337 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 4337
-
-
Kwiat, P.G.1
-
6
-
-
0000860046
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.60.R773
-
P. G. Kwiat, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.60.R773, 60, R773 (1999).
-
(1999)
Phys. Rev. A
, vol.60
, pp. 773
-
-
Kwiat, P.G.1
-
7
-
-
0037417322
-
-
ELLEAK 0013-5194 10.1049/el:20030400
-
A. Yoshizawa, Electron. Lett. ELLEAK 0013-5194 10.1049/el:20030400, 39, 621 (2003).
-
(2003)
Electron. Lett.
, vol.39
, pp. 621
-
-
Yoshizawa, A.1
-
8
-
-
19644400852
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.70.031802
-
H. Takesue and K. Inoue, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.70.031802, 70, 031802 (R) (2004).
-
(2004)
Phys. Rev. A
, vol.70
, pp. 031802
-
-
Takesue, H.1
Inoue, K.2
-
9
-
-
17444383334
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.94.053601
-
X. Li, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.053601, 94, 053601 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 053601
-
-
Li, X.1
-
10
-
-
13244275204
-
-
OPLEDP 0146-9592 10.1364/OL.30.000293
-
H. Takesue, Opt. Lett. OPLEDP 0146-9592 10.1364/OL.30.000293, 30, 293 (2005).
-
(2005)
Opt. Lett.
, vol.30
, pp. 293
-
-
Takesue, H.1
-
11
-
-
0032621435
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.82.2594
-
J. Brendel, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.82. 2594, 82, 2594 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 2594
-
-
Brendel, J.1
-
12
-
-
19744382431
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.180502
-
I. Marcikic, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93. 180502, 93, 180502 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 180502
-
-
Marcikic, I.1
-
13
-
-
26944431627
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.71.042335
-
M. Halder, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.71.042335, 71, 042335 (2005).
-
(2005)
Phys. Rev. A
, vol.71
, pp. 042335
-
-
Halder, M.1
-
14
-
-
10644266090
-
-
OPLEDP 0146-9592 10.1364/OL.29.002797
-
T. Honjo, Opt. Lett. OPLEDP 0146-9592 10.1364/OL.29.002797, 29, 2797 (2004).
-
(2004)
Opt. Lett.
, vol.29
, pp. 2797
-
-
Honjo, T.1
-
15
-
-
84856130057
-
-
The relative phase in Eq. 1 is equal to 2Δp, where Δp denotes the phase difference of the pump light between the first and second time slots. This means that, if the coherence time of the pump is shorter than the temporal interval of these two slots, the relative phase is undetermined. Thus, the coherence time of the pump must be larger than the pulse interval in order to obtain an entangled pure state such as Eq. 1.
-
The relative phase in Eq. 1 is equal to 2Δp, where Δp denotes the phase difference of the pump light between the first and second time slots. This means that, if the coherence time of the pump is shorter than the temporal interval of these two slots, the relative phase is undetermined. Thus, the coherence time of the pump must be larger than the pulse interval in order to obtain an entangled pure state such as Eq. 1.
-
-
-
-
16
-
-
0026852804
-
-
IEJQA7 0018-9197 10.1109/3.135206
-
K. Inoue, IEEE J. Quantum Electron. IEJQA7 0018-9197 10.1109/3.135206, 28, 883 (1992).
-
(1992)
IEEE J. Quantum Electron.
, vol.28
, pp. 883
-
-
Inoue, K.1
-
17
-
-
28844509849
-
-
An InxGa1-xAs APD for the long-wavelength band generally has a larger dark count probability than that of a Si-APD for the short-wavelength band. Therefore, to reduce noise counts, an InxGa1-xAs APD is normally biased above its breakdown voltage for a short period of time, which is called a gated mode operation. The upper limit of the gate frequency, which was 4 MHz in our experiment, is determined by the after-pulse characteristics of an APD.
-
An InxGa1-xAs APD for the long-wavelength band generally has a larger dark count probability than that of a Si-APD for the short-wavelength band. Therefore, to reduce noise counts, an InxGa1-xAs APD is normally biased above its breakdown voltage for a short period of time, which is called a gated mode operation. The upper limit of the gate frequency, which was 4 MHz in our experiment, is determined by the after-pulse characteristics of an APD.
-
-
-
-
18
-
-
4644269502
-
-
OPEXFF 1094-4087 10.1364/OPEX.12.003737
-
X. Li, Opt. Express OPEXFF 1094-4087 10.1364/OPEX.12.003737, 12, 3737 (2004).
-
(2004)
Opt. Express
, vol.12
, pp. 3737
-
-
Li, X.1
|